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INFLUENCE OF MULTICOLLINEAR RELATIONSHIPS
ON EMPIRICAL RESEARCH IN REAL ESTATE AND URBAN ECONOMICS

I. Introduction

Recently a substantial amount of research by urban economists, real
estate appralsers, and assessors has been directed at the estimation of
reduced-form price equations for housing. The statistical technique most
commonly employed by these researchers has been ordinary least-squares
regression analysis. The methodology utilized with this technique is
based on the assumption that the predetermined (explanatory) variables
are linearly independent. Unfortunately, this assumption is violated to
some extent in most estimations, that is, multicellinearity is present in
the data set. The purpose of this paper is to investigate and to evaluate
alternative methods for dealing with the multicollinearity problem in
reduced-form price equations (RFPE) for housing. Specifically, this paper
examines stepwise regression and principal components analysis as alterna-
tive ways to reduce the undesirable effects of multicollinearity. These
methods are evaluated on the basis of the explanatory and predictive power
of the RFPE estimated by each technique,

The scope of this paper is limited to a discussion and evaluation of
the statistical techniques as they relate to the reduction of multicollinearity.

The paper does not address the question of the appropriate specifications

* The authors benefited in this study from the helpful comments of a
colleague, Professor R. Dacey, and the data preparation and computational
agsistance of J. Lawson, M. Jones, T. Strickland, R. Palmer and G. Bray.



. of the theoretical model. The paper also does not consider the problem
of the correct measures as proxies for the theoretical variables. Since
the same theoretical variables.and measures are used by each technique
to estimate the RFPE, the effect of the theoretical specification and
measurement is held constant in the study. Also, the theoretical model
and data used in this study reflect the models and data most commonly used
by economists and real estate appraisers.

The next section of the paper reviews the procedures and problems in
estimating RFPE using ordinary least-squares multiple regression analysis.
Following this section the research design is outlined, and then in Section
IV the statistical methods used in the analysis are discussed. Section V
reports the statistical estimates of the RFPE using each method and the
predictive results obtained from these estimates as well as measurés of
multicollinearity. Finally, the conclusions and implications of the study

are reported in Section VI.

II. Overview of the Procedures and Problems
in Estimating Reduced-Form Price
Equations for Housing

In this section the procedures usually employed to estimate a RFPE for
housing are reviewed as well as the problems which multicollinearity causes
in the process. First, there is a brief discussion concerning the derivation
of the theoretical model, and then the necessary steps to estimate the para-
meters of the model are considered. Multicollinearity is then defined, and
an examination is made of the problems which 1t causes in estimations, speci-
fications, and forecasting. Finally, there is a review of the general procedures

that have been recommended for reducing the effect of multicollinearity.




Theoretical Model

The first step in the estimation of the reduced-form price equation is
the statement of a general theory concerning the behavior patterns in the
marketplace as follows:

£(8) = n (1)
where 8 = a matrix of real variables which are used to represent and describe

the interaction of the participants in the marketplace,

v = a vector of randem disturbances in the marketplace, E (p) = 0
A linear theory is given by

Ao =0 _' ' (2)
Let 8 be partitioned by the subvectors o (m x 1) and A (n - m x 1), and
partitioning A in form (A,£) that

Ao+ EX=0 (34)
is the structural form of the theory. The reduced-form of the theory can he
obtained by premultiplying by A-l and rearranging terms,l

a = -n gy | (4A)

The particular behavior pétterns in the housihg market are stated simply
that the demand for housing (DH) is given by

DH = £ (p, x,...xn)

where

P vector of housing prices

1l

X,
J
and that the supply of housing (SH) is given by

vector of other housing characteristies

S, = 8 (p, yl---yn)




where

vector of housing prices

o
I

n

yj vector of other housing characteristics

The price of housing is implicitly defined in the structural equation

b, -85,=0 (3B)
or

f(p,xl---xn) - g(p,y»;--yn) = 0

and explicitly defined in the reduced-form

p = h(xl...xn, yl...yn) (4B)

The theoretical determinants of the price of housing, h(xl...xn, yl...yn),
have been theorized by several writers and can be summarized in the following

broad categories:

(1) Accessibility

(2) Quantity

(3) Quality

{(4) Physical and Social Environment
(5) Fiscal Environment

(6) Financing terms and other conditions of the sale

Statistical Model

Given the theoretical variables of the RFPE, the next step is to establish
operational or observable measures or proxies for these variables. The
researcher's imagination comes into play at this time, as the variables can
be measured or proxied in an infinite number of ways. Table 1 suggests some

of the measures which have been used to proxy the different variables.




TABLE 1

Theoretical Variables Possible Measures

Accessibility Distance, time, or cost to and from
another economic activity

Quantity size of heated living area, number
of bedrooms, lot size, etc,

Quality . age of the home, type of construction,
construction materjals, maintenance
levels, number and types of built-ins,
etc. ' ' '

Physical and Social Environment types and conditions of surrounding
properties, income or education levels
of neighbors, etc.

Fiscal Environment property tax rate, quantity and quality
of municipal services, quality of
public schools, etc.

Financing Terms FHA, VA, or conventional mortgages,
assumable low interest mortgage,
junior mortgage availability.




When the theoretical variables are converted to operational measures,
the matrix [—A—lg] (exogenous variables) and the vector o (endogenous variables)
are observable in the marketplace. Consequently, the parameters of the theo-
retical model, vy, can be estimated by .consistent point estimates using the

least squares criterion as follows:

o= -0ty (44)
or
p=Xb+d (40)
where
p = nXx 1 vector <pl...pi...pn> of observed prices, a {endogenous variable)
b =mx 1 vector <bl...bj...bm> of estimated parameters, y
X =n x mmatrix <xll...xij...xnm> of the observed measutres of the
determinants of housing prices, nA_lE {exogenous variables)
d = nx 1 vector <d_...d ...dn> of the estimated disturbance terms, with tﬁe

1 i
aséumptions that E(d) = 0 and E(d'd) = 621.

The true relationship, b, between the exogenous variables, X, and the
endogenous variable, p, can be estimated with the ordinary least-squares (OLS)
procedure

b= x0T xp (5)
which has a variance-covariance matrix
Y (ﬁ) = 52d (1»('}()‘1

where Gd is the underlying variance of the disturbance term.

Once the estimates of the parameters are obtained, they are predominantly
employed in two ways: (1) hypothesis testing; and (2) forecasting. The
theorized relationships between the housing prices and housing characteristics

are stated as




and are empirically tested by

7 A_ ~ <A+t A =l—
pr (b, = £ p 8, by Dyt 8 ) @
h| h|
where
1-a = confidence level
t =b,/s
i""b
17
s = (var b.)l/2
bj j

Besides hypothesis testing, the economists also use the estimated para-
meters of the RFPE of housing, g, to forecast or predict a selling price, ;i’
given certain values for the exogenous variables.

Py = Oryqeeexyy) B
where
(xil...xim) is a vector of given values.

Real estate appraisers and assessors use the estimated parameters al-
most exclusively to forecast or predict the market value (most probable
gselling price) of a house. Assessors commonly use the RFPE for housing to
estimate the assessed values of the housing stock in a community for taxa-
tion purposes, while appraisers employ the estimated parameters to aid

them in predicting the most probable selling price of a house in the "Direct

Sales Comparison Approach'" to value estimation.




Definition of Multicollinearity

An important assumption of the statistical model is that the data matrix

has rank = m, the explanatory variables are linearly independent. The vectors

< XJ""'Xj""'xm > are linearly independent if there does not exist a set
of non-zero constants Apsreeesa such that
m
Lax, =0 (6)
=1 4 J
J.....

Since linear independence requires that the exogenous variables are mutually
orthogonal, multicollinearity can be defined as "departures from orthogonality"
[10, p. 100].

‘At the extreme if the variables are perfectly dependent, the matrix (X'X)
approaches singularity and cannot be inverted as required in the estimating
equation (5). At this point the parameter estimates are indeterminate.

Yet, multicollinearity alsc exists in cases where the variables are not perfectly
dependent, but only exhibit some level of interdependence--equation (6) is
approximated for some subset of the column vectors. The problem of multi-

collinearity is thus not just one of existence, but also of degree.

Problems with Multicollinearity

If the level of multicollinearity is significant in a data set, the
statistical model will be plagued by problems in the areas of estimation,
specification, and prediction.3 If the orthogonality assumption (along with
others relating to unbiasedness and minimum variance of the estimators) is
fulfilled, the influence of each of the explanatory variables on the dependent

~

b .

variable (price) can be accurately measured by the coefficients bl,...., o

With the presence of multicollinear relationships, the resultant estimates of

the population parameters tend to have very large variances. In these




situations hypothesis testing is quite difficult since the contribution of the
explained variance of one variable cannot be distinguished from the contribution
of another variable with which it covaries. Furthermore, the parameter estimates
are extremely sensitive to changes in the sample as well as changes in the

model specification.

The model specification begins with theoretical variables and moves to
operational measures. When these measures are observed, the hypothesized
relationships can be empirically tested. The presence of multicollinearity
in the data set makes the correct specification of the model very difficult.
Although the theoretical model can be misspecified, the operational proxies
are the cause of most specification errors as the theoretical richness of
the model is reduced and compromised to accommodate the available data,

Typically with housing data, a large number of measures are used to proxy a
theoretical variable. Unfortunately, as the number of variable measures taken
from a sample increases, each measure tends to reflect different dimensions of
the same few theoretical variables, This results in multicollinear relationships
in the data which cause increases in the standard errors of the regression co-
efficients and the possibilityrof incorrectly discarding important variables
bdsed on the tests of significance.

Quite often economists and real estate appraisers contendithat they are

not concerned about multicollinearity in the data set because the estimated

parameters are used to predict and not to explain. Although it may provide

a sense of well-being for its believers, this contention is subject to question.
For the parameters that are estimated with multicollinear data to be used
successfully for prediction or forecasting, two necessary conditions must be

met:




1. The estimated dependency relationship between the endogenous and
exogenous variables must remain stable,
2, The interdependency relationships among the exogenous variables
must remain stable,
The first condition is usually assumed on the basis of the hypothesized
theoretical relationships. However, there is generally no theoretical reason
for assuming that the second condition holds and in most studies litfle effort
is made té empirically test for this condition., Implicitly assuming that the
interdependency relationships among the explanatory variables stays constant,

when in fact they do not, can lead to substantial prediction errors.

Corrections for Multicollinearity

When multicollinearity is present in a sample, there are three broad types
of remedies which are generally suggested for reducing its influence [26, pp. 383-
386]:
(1) change the specification of the model., The specification can
be modified by simply deleting one or more‘of the variables
which have the highest degree of multicellinearity. While this
remedy may reduce the level of interrelationships in the model,
it also introduces the possibility of a serious specification
error.
{2) redefine the explanatory variables. The redefinition of the
variables is usually in the form of transformations (ordinary
first differences or log first differences) or aggregations
{linear or non-linear combinations of the original variables
to form new composite variables). Of course in the case of
the first difference transformation, multicollinearity is reduced
at the cost of possibly increasing the autocorrelation in the

disturbance term.




- (3)

10

acquire additional data. This remedy is usually accomplished
by increasing the sample size. The acquisition of additional
observations can improve the estimation of the parameters with
multicollinear data providing the new information increases the

range of the original variable values,




11

IIT, Research Design

This study evaluates two quantitative methods that have been pro-
posed for reducing the influence of multicollinearity in a multiple
regression model--stepwise regression and principal components regression.
The statistical methodology utilized with these techniques, especially
the procedures employed for multicollinearity reduction, are briefly'
described and contrasted in the next section of this paper. Then, using
a sample of residential housing pbservations, four reduced-form price
equations are derived with a ordinary least-squares procedure and with
the two alternative techniques. Subsequently, tests are performed to
determine the level of pulticollinearity affecting the equations, and the
predictive ability of each model is examined with a holdout sample from
a different time period.

The residential sales data considered in this study is drawn from
single-family home sales in the Norman, Oklahoma area during the period
of January, 1973 to Decembe?, 1975.5 On the basis of the date of sale,
the total sample is segmepted into two groups: (1) an analysis sample of
504 observations having a sale's date on or before March 1975; and (2)

a holdout (prediction) sample of 228 houses that were sold after March,
1975. The analysis samplé is applied to the development of the price-
equation models and corresponding multicollinearity tests, while the
holdout sample is retained for the prediction tests.6

In this study two statistical measures are applied to the evaluation

of the degree of multicollinearity affecting the regression coefficients in the




12

models. One of the measures is the value |X'X|, the determinant of the
mxm correlation matrix—-X being a nxm matrix of niobservations on m
explanatory variables with the observations normalized on the basis of

the sample size and the standard deviations of m.7 if pairwise indepen-
dence (orthogonality) exists between all of the m variables, then X'X re~
duces to an identity matrix and IX'X|=1. Alternatively, if perfect colli—
nearity is present, |X'X|=0. Thus, 0 < |X'X| < 1 serves as an ordinal
measure of the level of pailrwise correlation or dependence influencing

the regression estimates.

The other measures that are derived for assessing multicollinearity
(beyond just simple pairwise correlation) are the coefficients of multiple
determination, Rjz, which are obtained when each individual variable, Xj’
is regressed on the remaining m-1 explanatory variables.8 If any one of
these ijz's'is close to 1, then there is a linear relationship among two

or more of the explanatory variables and the degree of multicollinearity
2y

i

are near zero, the level of interrelationship among the variables is low.

for these interrelated variables is high. Conversely, if all of the R, ''s
Both the Rjz's and [X'XI are calculated with the observations in the ana-
lysis sample and the explanatory variables in the form that they are
applied to the construction of the reduced-form price equations.

To test the relative ex post forecasting ability of the models, the
regression coefficlents estimated in the analysis sample with each tech-
nique are multiplied times the values of the explanatory variables in the
prediction sample and summed across the observation to obtain a forecasted
sale price for each house. A comparison is then made of the difference
between the forecasted price (Pfi) and the actual sale price (Pai) and

two measures are calculated for each model:
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1. mean absolute error (MAE)

While the mean errvor would be influenced by the sign of the deviation of the
forecasted from the actual price, the MAE takes into account .only the magni-
tude of the prediction error. Similar to the standard deviation as a measure
of dispersion, the RMSE~-by squaring the difference between the prices--
gives greater weight than the other measures to those predictions which

are further away from the actual price.
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IV. Methodology

Initially in this study, an OLS model is estimated with the housing
observations in the analysis sample. The data matrix X in this sample has
dimensions of 504 x 47, However, since three of the housing characteristics
are being measured through three sets of dummy variables that for each
characteristic are mutually exclusive and exhaustive in the sample (e.g.,
the type of construction), one dummy variable in each set must be dropped
from X to allow the inversion of (X'X). The influence of the three
variables, of course, is then measured in the constant bo' Therefore, the
estimation of the regression coefficients ﬁér_only 44 of the 47 vafiables

is attempted with the QLS model.

Stepwise Regression

With the presence of multicellinearity (X having rank < m), one
of the techniques which has been proposed for reducing the level of multi-
collinearity is stepwise regression (SWR), Stepwise procedures have been
employed for variable selection and reduction in previous appraisal studies.g
The usual criterion in most SWR algorithms is to select that subset of
explanatory variables x? (3=1,...., 83 8 < m) which is most highly
correlated with the dependent variable. SWR methods can be combined with

a F test to reduce the dimensions of X without significantly influencing

the explanatory power of the model.lO The resulting SWR model will then be
p=ZX%b+d (7)

with X* being a nxs matrix and the b's being estimated with a least-

squares procedure,
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0f the three general types of remedies for multicollinearity re-
duction described in Section 1I, the SWR technique is attempting to
empirically weaken the influence of multicollineaxrity by changing the
specification of the model. Yet, it should be noted that besides the
general concern over the possible sample dependence of the stepwise
gselection and the need to replicate the results with other samples to
insure that the selected variables are the optimum in the population,
this type of procedure may still leave a subset of explanatory variables
that are interrelated. While the SWR technique will allow for the redue-
tion of the number of variables and thus the possible multicollinearity,
the criterion and methodology do not necessarily guarantee that the se-
lected variables will be independent. The actual rank of X* may be < s
and the ﬁ still subject to the influence of interrelationships among the

x%'s,

Principal Components Regression

An empirical method that has been utilized for deriving a reduced-
form price equation with the minimal influence of multiccllinearity is
principal components regression (PCR).11 Principal components analysis is
a multivariate statistical technique that groups the variation in a data
set into distinct dimensions while trying to account for as much of the
total information in the sample as possible., This procedure extracts the
maximum amount of variance from the explanatory variables while simplify-
ing a large number of variables into a smaller set of independent dimensions.
The principal components model takes the form:12

x = Af' (8)
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with x = m x 1 vector of explanatory variables, A = m x ¢ matrix of factor
loadings, and f = 1 x ¢ vector of factors.13 Each factor loading, aji’
represents a product-moment correlation between xj and fi. In a components
model the initial number of factors is equal to the number of variables,
¢ = m., However, in many research situations, the number of factors retained
for future analysis and interpretation (r) will be less than m, with the
residual variance of the remaining c-r factors assumed to bhe attributable
to random error,

To facilitate the interpretation of the substantive meaning of each
fi, this study rotates the loadings matrix of the retainéd factors using
a varimax procedure. This technique trys to describe a factor in terms
of as few variables as possible while still preserving the independence
(orthogonality) of the factors. This transformation results in a matrix

of rotated factor loadings, Eji’ which tend to have values close to either

one or zero. Those xj's with high a,

j1 on a fi can be interpreted as

being highly related to the dimensilon associated with fi.

Also, the rotated loadings matrix is utilized in this study in thg
formation of factor scores to represent each of the factors. The factor
scores are calculated through the equation

2! =~ BB Ex (9)
with Z = n x v matrix of factor scores representing the values on the
factors for each observation, A = m x r rotated factor loadings matrix,

and X = n x m matrix of values on the variables for each observation.
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The matrix 72 is then employed in the PCR model of the form

p=2b+d ' (10)

~

to estimate a b for each factor using the OLS estimation procedure., The
factor scores matrix 1s also.utilized in the tests of the level of multi-
collinearity affecting the esti;ates of the coefficients for the PCR model.
Unlike the SWR technigue, PCR tries to reduce the influence of multi-
collinearity by redefining the explanatory variables in a reduced-form
price equation., The redefined variables are in the form of linear trans-
formations of the original explanatory variable. On a theoretical level
in an appraisal study, a researcher in attempting to fully identify those
characteristics that explain the price of a house may employ a number of
explanatory variables that, in essence, measure the same determinant in
the population. TFor example, in examining the effect of the neighborhood
on the value of a house, the appraiser may include in his reduced-form
price equation observable variables such as average income, school dis-
trict, etc. as measures of the neighborhood quality. Or, perhaps the
problem is fhat no single variable alone is capable of measuring the
effect of the neighborhood characteristic on the observations and only
through the consideration of a set of multiple-interrelated measures will
the characteristic be adequately represented in the model. PCR enables
the researcher in these situations to statistically combine the observable
interrelated variables and attempt to develop constructs that serve as

better measures of the characteristiec than the explanatory variables

applied on an individual basis.
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The controversies surrounding this technique have generally been in
the areas of the interpretation of the stapistically—formed factors and the
proper criterion for factor retention in a PCR model, Farrar and Glauber
[11,p.97] have taken the position that the PCR technique 1is fruitful only
if the factors have a recognizable substantive meaning as economic variables.
On the other side McCallum [25] argues that the lack of a clear eccnomic in-
terpretation of the factors is not critical, so long as the factors allow
for a better estimation of the dependent variable. Two alternative criteria
have been proposed for determining the optimal number of factors to be retained
in a PCR: (1) delete the factors which are relatively unimportant as pre-
dictors of the original explanatory variables--those factors with the smallest
eigenvalues; and, (2) delete the factors which are relatively unimportant
as predictors of the dependent variable--those factors with the smallest t
ratios. Coxe [7] and Greenberg [13]} have presented [indings which indicate
that the cholee of the retention criterion should be dependent on the pur-
pose of the study. If the primary objective of the study is structural éna—
lysis and thus the researcher would like to minimize the standard errors of
the coefficients, retaining only those factors with eigenvalues greater than
one is the best selection procedure. However, in forecasting applications
of PCR where minimization of the prediction error is the primary goal, the
optimal criterion is choosing those factors that are important predictors

of the dependent variable,
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V. Analysis of Results

Reduced-Form Price Equations

The equations estimated with the OLS and SWR technique are presented in
Table 2. An examination of the summary statistics for the OLS equation
finds that the OLS model derived a RFPE that explained a major percentage
of the variation of the sales price for the housing observations in the
analysis sample. The R2 in the OLS regression is .9038, and the standardA
error of estimate (SEE) is $3,737 or approximately 127 of the mean sales
price. Of the forty-four explanatory variables included in the OLS model,
twelve coefficients are significant at the ,05 level. On the basis of the
standardized coefficients, the square feet variable is the most important
determinant of the sales price, followed by the year built (YRBUILT) and
central air conditioning (CLC).

However, for some of the explanatory variables the signs of the re-
gression coefficients are the opposite of the direction that would be ex-
pected from the theoretical relationships. For example, with each additional.
bedroom or bathroom, or an increment in the total number of rooms in a house,
it would be hypothesized that there would be an increase in the sales price
of the dwelling. Yet, for all three variables (BEDRMS, BATHRMS, and NBRMS)
the coefficients have negative signs, indicating an inverse relationship
between the sales price and each additional room unit.14 Obviously, some-
thing is wrong, and the problem rests in the area of multicollinearity.
While the results of the multicollinearity measures for the OLS model will
be presented in the next section, even a cursory examination of the pairwise

correlation among the explanatory variable in the analysis sample (see




TABLE 2

OLS AND SWR MODELS

QLS SWR
1 Regression Standardized Regression Standardized
Variable Coefficient Coefficient Goefficient Coefficient
SQFT 17.179 799 17.150 . 818
(27.275) %% (31.386) %%
LOTSIZE .175 . 052 212 .178
(3.008) %% (3.988) **
BEDRMS -877.782 -,042 -1019.325 -.048
(~1.810) (=2,453)%
BATHRMS -1058.141 | ~.047 -1096.783 -.049
(-1.922) (-2.139)*
NBRMS -~190,090 -.021
(-.743)
YRBUILT 195,571 .155 171.501 .136
(4.702) %% (6.466) %%
DATESOLD 97.808 041 102.912 043
(2.497)% (2f908)**
TCF 1548.681 .025
(.870)
TCB 520.606 014
(.378)
TcR? ——— ———
TCO -196.470 -.004
(-.113)
FLS 173.290 .005
(.198)
FLC2 —— —_——
COE ~1004.,126 -.042
(~1.076)
COoG -1899.385 -,082 =945,290 -, 041
(-2.231)= (~2,577) %%
cor? ——— -——
ORC -851.517 -.028 -1036.664 -.034
(-1.522) (-2.151)*




TABLE 2 (Continued)

OLS AND SWR MODELS

0LS SWR
1 Regression Standardized Regression Standardized
Variable Coefficient Coefficient Coefficient Coefficient
ORU 515.879 .020
(1.126)
ORD 227.488 006
(.354)
ORO 544,962 .003
(.197)
PTC 24606,102 .052 2483.976 .053
(2.830) %% (3.316) %%
PTO 775.077 .033 1010.654 043
{(1.467) (2.464)%
CDC 1034.427 : .025
(1.545)
C¢bD - =210.036 -.006
(-.312)
FNS 2663.639 .025 3412.029 .032
(1.620) (2.183)%
FNC -321.093 -.003
(-.202)
FNO ~-673.437 -.019
(-1.169)
OF 1595.096 043 1313.440 .036
(2.468)% (2.196)%
HTC -322.503 ~.007
(-.180)
HTF -1241.328 -.026
(-.698)
CLC 4243,.918 .128 4411.551 - .133
(5.229) %% (7.431) %%
CLW 509.317 .010
(.488)
TYLNC 198.684 .008

(.305)




TABLE 2 (Continued)

OLS AND SWR MODELS

o OLS SWR
1 Regression Standardized Regression Standardized
Vardiable Coefficient Coefficient Coefficient Coefficient
TYLNV 291.674 011
{.366)
TYLNF 769.641 . 031
(1.004)
AVEINC 022 .005
(.149)
TOCAMPUS 982.649 074 612.612 046
(2.867)#%% (2.483)%
TOI35 900,394 102
(1.653)
JACKSON . 162.658 .004
(.120)
CLEVELAND -418.455 -.015
(-.326)
WILSON -1398.679 ~.029
(-1.222)
JEFFERSON -4517.949 -.103 -2242.201 -.051
(-3.122) %% . (-3.368)%%
EISENHOWER -38936.733 -.147
(-2.390)=* ‘
LINCOLN 712,475 .010
' (.464)
MCKINLEY 1130.874 .024
(.769)
MONROE 413,184 .011
(.769)
KENNEDY -2456.877 -.056 -1401.252 -.032

(-2.213)% (-2.094)*




TABLE 2 {Continued)

0LS AND SWR MODELS

bLS SWR
Constant ~18650. 864 ~16215. 720
R .9038 | | 8995
R .8946 .8962
SEE 3737.090 3709. 3525
F 98.039 272,345

Figures in parentheses are t values. * = significant at .05 level., #% =
gignificant at .01 level,

lAn interpretation of the variable symbols can be found in Table 1A in Appendix.

2Variab1es withheld from OLS to allow for inversion of (X'X).
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Table 3A in the Appendix) shows a number of high correlation coefficients
for the variables with the wrong regression signs. The regression co-
efficients for these variables are therefore being influenced by other
explanatory variables, and the interrelationships are causing the OLS
model to clearly provide inaccurate information concerning the direction of
the marginal influence of each of these variables on the sales price.

The SWR equation in Table 2 is constructed with a stepwise regression
procedure using a partial F (1,», .95) = 3.840 for selection and retention
of the explanatory variables [10, pp.171-172]. A total of sixteen variables
are ultimately selected in the stepwise procedure for inclusion in the model,
and even though the R2 for the SWR equation is slightly lower than in the
OLS model, the adjusted coefficient of multiple determination (ﬁz, adjusted
for degrees of freedom) is higher than in the OLS equation. These results

imply that the reduced subset of variables in the SWR model can explain in

the population approximately the same level of variation of the sales price
as the total set of variables in the OLS equation.

Unlike the OLS model all sixteen variables in the SWR equation have
coefficients which are significant at the .05 level. Also, note that four
variables (BEDRMS, BATHRMS, PTO, and FNS) which had insignificant t values
in the OLS equation are now exhibiting significant coefficients, due to a
reduction in their standard errors with the model specification derived by
the stepwise procedure. While the OLS model indicated that these four
variables did not have a significant impact on the sales price and should

possibly be discarded in forming the RFPE, the SWR shows that these variables




21

do have a significant relationship with the dependent variable (based on B
the partial F criterion) and therefore should be retained in the RFPE.
However, both the bedrooms aﬁd bathrooms variables-—-along with others in
the SWR equation—-continue to exhibit theoretically-incorrect regression
signs with the likelihood that multicollinear relationships are still
affecting the SWR equation,.

In the development of the PCR equations, the analysis sample ié sub-
jected to a principal compenents analysié of the explanatory variables,
and the two alternmative criteria are utilized in the determination of the
number of factors retained for rotation. On the basis of the eigenvalue-
one criterion {(retained factors limited to those with eigenvalues greater
than one)}, a total of sixteen factors—--accounting for 72 percent of the
orlginal variance in the analysis sample--are selected for rotation and
further analysis. Table 3 gives a summary of the resulting factor loading
matrix after a rotation of the sixteen factors. Additionally, a second
PCR model is derived through the retention of all forty-four factors, and
Table 4 summarizes the rotated factor loading matrix with the forty-four
factors.,

From an examination of Table 3 for the sixteen factor model, most of
the factors seem to have a substantive meaning as representations of the
theoretical determinants of property value., For example, Factor 1 forms a
"quality" dimension through the combination of variables such as the type
of heating and cooting system (HTC,HTF,CLC, and CIW), the type of con-
struction (TCB and FLS) and the age of the structure (YRBUILT). An obser-

vation with a high positive factor score on this dimension would be expected




TABLE 3

SUMMARY OF ROTATED FACTOR LOADINGS MATRIX

(16 FACTOR MODEL)

Factor Variablel Loading2 Factor Variablel Loadiqgi
HTC . 879 6 WILSON . 729
HTF -.846 TCO .551
CLC . 784
CLW -. 660 7 FNS .708
. TCB 644 LINCOLN 619
FLS .608
YR BUILT . 606 8 FNO . 710
NBRMS . 838 ) CbD .803
SQFT 793
2 BEDRMS . 749 10 ORD 776
BATHRMS .737 '
TYLNV « 798
TOI35 . 893 11 TYLNF -.697
EISENHWR . 823
3 AVEINC -.755 12 JEFFRSON .838
MONROE ~.579
13 KENNEDY .865
CoG . 892
4 COE -.856 14" JACKSON .865
CLEVLAND . 847 15 PTC 773
2 TOCAMPUS .589
16 ORO .778

An interpretation of the symbols for the variables can be found in Table 1A in the

Appendix.

2 Loadings greater than the .550 level.




22

to be of better quality and have a higher sales price. Factor 4 would also
represent another "quality" dimension, except in this case {given the signs
of the loadings) there would be the theoretical expectatiocn of an inverse
relationship between these factor scores and the dependent variable.

" dimen-~

Similarly, Factor 2 can be interpreted as representing a 'quantity
sion and Factor 11 as a "financing" dimension.15 Other factors (i.e.,
Factors 3,5,6,7,12,13, and 14) are formed primarily by school district
variables and would seem to be representing '"meighborhood" dimensions which
would tend to be unique to the Norman housing population.

An analysis of the rotated loadings in Table 4 with the full forty-
four factor model indicates that, when compared to the sixteen factor model,
these forty-four factors are not as easily interpretable as theoretical
determinants of property values. Even though the first sixteen factors
listed in the table have similarities with the factors derived ig the six-
teen factor model, there are some obvicus differences in the size of the
loadings for the explanatory variables. Also, some of the sixteen factors
in the first model split in the second model into a multiple number of
dimensions. For example, three of the variables that had high loadings in
Tactor 2 in the sixteen factor model (i.e., NBRMS, SQFT, and BATHRMS) have
less infliuence in Factor 2 of the forty-four factor model and these-variables
are dominant in defiﬂing other dimensions (Factors 32, 35, and 36) in the
second model. These additional twenty-eight factors in the second model
seem to represent other dimensions in the sample that are not included in
the sixteen factor model. However, the low level of the loadings in many
cases make the identification of the economic meanings of these factors

difficult,




TABLE 4

SUMMARY OF ROTATED FACTOR LOADINGS MATRIX
(44 FACTOR MODEL) '

Factor Variablel Loading2 Factor Variable1 Loading2
HTC .902 17 TCO .919
HTF o =.925 TCH -.701
CLC 517
1 CLW -.282 18 TCF .959
TCB 278 |
FLS .373 19 TYLNC .911
YRBUILT 292
20 MONROE .847
NERMS .539
2 SQET 448 21 LINCOLN . 966
BEDRMS . 934
BATHRMS .352 - 22 MCKINLEY . 949
TOI35 .919 23 OF .955
3 EISENHWR . 918
AVEINC ~-.516 24 LOTSIZE . 954
MONROE -.217
25 CLW 914
4 oG . 957
COE -.919 26 CDo . 967
5 CLEVLAND .337 27 FNC .978
TOCAMPUS .834
28 ORU. 262
6 WILSON .962 , 29 PTO .883
TCO .099
30 ORC . 954




TABLE 4 (cont.)

Fdactor Variablel ‘ Loading2 Factor Variablel Loading2

7 FNS .985
LINCOLN .100 31 DATESOLD .978
8 FNO 976 32 BATHRMS . 804
9 CDD .983 33 FCS 61
10 ORD 972 34 CLC 726
11 TYLNV .939 35 SQFT 593
36 NBRMS 592

12 JEFFRSON . 983
37 AVEINC . 586

13 KENNEDY .972
38 YRBUILT . 527

14 JACKSON . 960
39 TYLNF 469

15 PTC .970
40 CLEVLAND .338

16 ORO 995
41 TCB .306
42 .COE L2111
COoG .183
43 HTC .203
HTF +185




TABLE 4 (cont.)

2 1 2
Factor Variablel Loading Factor Variable Loading
b TO135 -.125

EILSENHWR .125

lAn interpretation of the symbols for the variables can be found in Table 1A in the
Appendix.

2For Factors 1-16, loadings given for variables of similar factors in Table 3 with 16
factor model. For Factors 17-44, loadings given for dominant variables,
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Applying the two sets of factor scores formed with the two rotated
loadings matricies for the sixteen and forty-four factor models and the
standardized variable values for the observations in the analysis sample
(see equation (9)), two PCR equations are constructed Qith the factors as
explanatory variables and the sales price (in standardized form) as the
dependent variable. Tables 5 and 6 show the two equations formed with the
PCR technique. PCR16 is derived by employing the ordinary least-squares
procedure with the sixteen factors formed on the basis of the eigenvalue-one
criterion. PCR&44 is developed with the least-squares procedure using the
full forty-four factor model.

For the PCR16 equation, the sixteen factors exhibit less explanatory
power in the analysis sample than the original variables in the OLS and SWR
models. The R2 for PCR16 is .7668, compared to .9038 and .8995 in the OLS
and SWR equations. Also, the standard error of the estimate is higher in
this equation than in either the OLS or SWR models.l6 For the PCR44 equation,
the forty-four factors have exactly the same explanatory power as the original
forty-four variables in the OLS equation. The R2 and SEE for PCR44 are equiva-
lent to the measures in the 0LS equation. This result is not surprising since,
unlike PCR16, the PCR44 model is employing the same total information (variance)
of the explanatory variables as used in the OLS model. Only in the case of
PCR44, the information is utilized in the form of statistical dimensions con-
structed on the basis of the interrelationships present among the explanatory
variables rather than the actual variables,

Unlike the QLS and SWR models, the coefficients in the PCR16 equation

seem to have the theoretically-correct signs, While COE, HTC, and CDD all




TABLE 5

PCR16 EQUATION

Regression Regression
Factor Coefficient Factor Coefficient
1 . 3700 9 .1223
(16.910)** (5.587)%x
2 . 6861 . 10 .0206
{31.354)%% (.941)
3 _ -.1043 11 -.0145
(-4.765)%* (~.662)
4 -.2149 12 .0702
(~9.821)%*% (3.210)%=*
5‘ . 2387 13 -.0711
(10.910) %% (-3.248)%%
6 -.0025 . 14 -. 0060
(-.115) (-.274)
_7 L0451 15 0266
(2.060)% ‘ (1.215)
8 -.1278 16 -.0217
(=5.842)%% (-.993)
Constant . 00000202
R2 . 7668
RZ 7592
SEE .49075
F 100.107

Figures in parentheses are t values. *%* = gignificant at .05 level. #*%* = gignificant
at .01 level.




TABLE 6
PCR44 EQUATION

Regresgsion Regression Regression
Factor Coefficient IFactor Coefficient Factor Coefficient
1 L2384 17 -.0715 33 L1011
(16.,470) ®* (-4.938) %% (6.987) %%
2 . 3426 18 -.0503 34 . 1969
(23.667)%% (-3.475)%% (13.603) #*
3 -.1408 19 L2397 35 4872
(-9,726) %% (16.,557)%% (33.658) %%
4 -.2473 20 -.0023 36 .0997
(~17.082)*% ‘ (.162) (6.885) %%
5 L2081 21 -.0145 37 -.0005
(14.378)%* (1.001) : (.037
6 -.0722 22 -.0204 38 L0945
(-4.990) %% _ (1.409) {(6,531) %=
Fi 0677 23 .2137 39 -.0103
(4.675)%=% (14,763) %% (-.712)
8 ~.0680 24 L1517 40 .0012
(—4.698) %% {10.479) %% {.080)
9 ,0997 25 -.0962 41 L0026
(6.889)%% (-6.644) %% (.181)
10 .0554 26 0224 42 -.0208
(3.826) %% (1.548) (-1.435)
11 ~. 0466 27 -,0285 43 -.0073
(~3,217)*% (-1.967)% (-.501)
12 -, 0450 28 0424 44 -.0303
(-3.112)*% (2.928)%% (~2.095)*
13 -, 0488 29 . 1625 Constant . 00000039
(~3.374) %% (11.225) #* gi .9038
R . 8946
14 ~.0285 30 L1028 SEE » 32464
{(~-1.969)* (7.104)%%* F 98,039
15 L1474 31 0626 i . th r 1
(10.182) #% (4,322) %% igures in parentheses are t values
* = gignificant at ,05 level.
16 .0052 32 .2330 ,
(.362) (16.099) %% *#% = gignificant at .0l level,
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exhibit negative coefficients in the OLS model, the signs for Factors 4, 1,
and 9 indicate that these variables are having a positive influence on sales
price, as would be expected given the hypothesized theoretical relationships.
Similarly, even though the SWR derives negative coefficients for  the BEDRMS
and BATHRMS variables, the positive sign of the regression coefficient for
Factor 2 correctly measures the direction of the effect of these variables on
the dependent variables,

The relative magnitudes of the regression coefficients in the PCR16
equation shows that Factor 2 (the "quantity" dimension) is the single most
important factor affecting the sales price of a house in the analysis sample--
followed by Factor 1 (a "quality" dimension), Factor 5 (a "neighborhood”
dimension), and Factor 4 (another "quality'" dimension). Through the combi-
nation of the PCR coefficients and the factor loadings, an analysis can also
be made of the comparative impact of some of the explanmatory variables on the
dependent variable. As an example, the large loadings for the NBRMS variable
in Factor 2 means that this variable is important in defining this "quality"
dimension and (given the lérge coefficient for this factor In the PCR16
equation) determining the sales price.17 Conversely, the insignificant
coefficient for Factor 11 indicates that the "financing” dimension and the
variables forming this dimension (primarily, TYLNV and TYLNF) are not impor-
tant determinants of the sales price. While this type of analysis does not
provide the cardinal measures of marginal impact for the explanatory variables
that result from the OLS and SWR equations, the choice of which technique to
employ in a structural analysis of a RFPE should be dependent upon the com-—

parative influence of multicollinearity in the estimation of each equation.
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Multicollinearity Measurements

Table 7 presents the values for the two statistical measures of the
degree of multicollinearity affecting the regression coefficients in the
four equations. These measures suggest that there are decidedly different
levels of multicollinearity influencing each of the models. While the
variables in the OLS model have an extremely high degree of ihterrelatioq—
ship, the factors in thé PCR model are independent (the |X'X| is equal to 1
and all the R?'s are zero to five decimal places), and thus the coefficlents
in the PCR equations have no multicollinear relationships affecting their
directions or magnitudes. While the SWR model is between the two extremes,
the R?'s in the last column of the taple show that certain coefficients in
the SWR equation are being plagued by multicollinearity.

These results have important implications for any attempt at structural
analysis of a RFPE. The equations themselves, of course, gave indicationms
of the direct effects of multicollinearity-—the high standard errors and
the wrong signs in the OLS and SWR models. Yet, the indirect influences of
multicellinearity on the coefficients are often more subtle and not obvious
in the examination of a RFPE, Tor example, the square feet variable has the
correct sign and a significant t value in both the QLS and the SWR equations,
leading an observer to the possible conclusion that the marginal value of each
square foot on the sales price is being correctly measured at approximately
$17 per square foot. But, is this the correct value?

With the multicollinearity tests, the R2

2
(8WR). These measures indicate that the SQFT variable is highly related to

's are .75573 (OLS) and .68028

other explanatory variables in the models (e.g., BEDRMS,BATHRMS,and NBRMS).
The regression coefficients for the SQFT variable are therefore also repre-

senting the influence of other variables, and the values of the regression




TABLE 7

MULTICOLLINEARITY MEASURES

K
Model |x'x] Average Five l-I:I_ghest:L
2
Ryy = 94446
2
R, = .94438
oLS ,00010 . 60886 R27 - .88830
2 _
R, = 87580
2 _
RZ, = 86507
2 _
RS = .68208
2 _
RS = 59974
SWR 02445 28664 R% = .53139
2
R, = 46673
RZ. = .39966
38 =
PCR16 1..00000 . 00000
PCRAG 1.00000 . 00000
1

For OLS and SWR models, j's are variable numbers in
Table 2A.
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coefficients in the OLS and SWR equations will thus be affected by the model
specification. The PCR model is fhe only technique that allowed for a
definitive assessment of the relative influence on sales price of the in-
puts in a regression equation, although in this case the inputs are statis-
tical constructs in the form of linear combinations of the explanatory

variables rather than the actual variables,

Prediction Tests

The results of the prediction tests with the four equations and the
holdout sample are presented in Table 8. The two measures of forecasting
ability generally find that the four models do not perform equally in the
prediction of the actual sales price of an observation in the holdout sample.
The absolute sizes of the forecasting errors (MAE) indicates that the PCR44
equation is the best predictor of the value of the dependent variable in the
holdout sample, followed closely by the OLS and SWR equations. The forecast-
ing errors for the PCR16 equation are significantly higher when compared to
the results with the other equations. Given the loweerz's for PCR16 in
the analysis sample, the poorer predictive performance of this equation in
the holdout sample could be expected, and these results indicate that
some of the twenty-eight factors that were not retained in the sixteen-factor
model (with the eigenvalue-one criterion) could have been useful in the pre-
diction of the sales pricés in both the analysis and holdout samples,

A comparison of the root mean square errors (RMSE) in the holdout sample

with the standard errors of the estimate (SEE) 4in the analysis sample also

shows that all four equations had a reduction in their forecasting ability

between the two samples.18 The RMSE's for the four equations are higher




TABLE 8

PREDICTION RESULTS

Medel MAE RMSE

OLS 3368.51 4499.58
SWR 3409.24 4504.17
PCR16 5085.32 7151..23
PCR44 3338.32 4496, 50
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than the SEE's: OLS by $762; SWR by $795; PCR16 by $1,052; and, PCR44

by $759. Generally, there are two possible explanations for this type of
drop in the predictive capability of the models.19 First, the true rela-
tionships in the population between the dependent variable and the explanatory
variables (or factors in the PCR models) has changed over the time periods.
Second, the interrelationships among the explanatory variables has not re-
mained stable. In this second situation the OLS, SWR, and the two PCR

models will experience--but, perhaps in differing degrees--an increase in
prediction errors, since all four equqtions are constructed either implicitly
(0LS and SWR) or explicitly (PCR16 and PCR44) on the basis of certain
multicollinear relationships present in the analysis sample.

To test the stability of the interrelationships among the explanatory
variables in tﬁe two samples, a comparison can be made of the correlation
matricies for the variables across the observations in each sample. An
analysis of the comparative pairwise correlations (see Tables 3A and 4A in
the Appendix) suggests that the interrelationships remained fairly constant.
As a descriptive measure of the equivalence of the entries in the two
matricies, a correlation coefficient is calculated for the non-diagonal
elements of the lower triangles for the forty-six explanatory variables in
the two samples—-variable 21 (ORQ) is not considered since no observations
in the holdout sample exhibited this characteristic. The correlation be-
tween the entries in the two matricies is ,8754, indicating a high degree
of stability of the interrelationships between the two samples. Thus, the
reduction in the forecasting ability of the four equations in the holdout
sample does not seem to be primarily a function of changes in the multi-

collinearity among the explanatory variables.
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However, it is interesting to note that, with this small change in the
multicollinearity structure, the PCR44 model did slightly better in fore-
casting than the OLS model. Since the OLS and PCR44 equations had equal
R2's and SEE's In the analysis sample, any differences in the predictive
power of the two equations in the holdout sample must be attributable to:
(1) differences in the stability of the sales price-explanatory variable
dependency relationships in the OLS equation versus the sales price-factor
relationships in the PCR44 equation; and, (2) any differences in the effect
on the two equations of the minor instability in the multicollinear relation-
ships. In both cases, these results suggest that thé full-factor PCR model
retains a higher level of forecasting power over time than models developed

with the alternative procedures.
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VIi. Summary and Conclusions

This study has examined three quantitative models that can be applied
in the estimation of reduced-form price equations for housing under condi-
tions of multicollinearity. With a sample of residential housing observa-
tions, four equations were fqrmed and tested for the degree of multicollineatrity
influencing the equations and the forecasting poﬁer of each model in a
holdout sample. This study then attempted to evaluate the suitability of
the OLS, SWR, and PCR techniques for structural analysis and prediction.

The resulis of this study show that the application of an OLS or SWR
model in the structural analysis of a RFPE for houéiqg is a very tenuous
proposition. Under conditions of multicbllinearity,.this research demon-—
strated how the regression coefficients estimated by the OLS and SWR
techniques are often troubled by theoretically-incorrect signs, high
standard errors, and coefficients that generally are not accurate measures
of the marginal impact of the explanatory variables on the sales price.

Even though smaller models could be heuristically-designed with pessibly

lower levels of multicollinearity than exhibited in the statistical models
employed in this study, such attempts would explicifly requlire certain
variable choices that may directly lead to model specification errors. The
simultaneous consjderation of the large number of explanatory variables that
seem to measure different aspects of the theoretical determinants of property
value inherently involves meodels with a high degree of multicollinear relation-
ships. While the PCR model provided accurate coefficients for the factors,
this technique did result in the loss of direct absolute measures for the

explanatory variables. Yet, the findings of this study suggest that tﬁis level
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of aggregation in the form of statistically-derived factors may be the only
suitable method in most cases for an assessment of the impact on the sales
price of the hypothesized determinants of property value.

The results of this study provide additional evidence concerning the
question of the optimal criterion for factor retention in a PCR model applied
to the estimation of a RFPE for a residential market. The sixteen factors
retained on the basis of the eigenvalue-one criterion exhibit in this study
a more discernible economic meaning as representations of determinants of
property values than the forty-four factors retained with Fhe full-factor
model. Conversely, the PCR model with the greater number of factors is able
to explain a larger percentage of the variability.of the dependent variable
and show a better prediction performance in the holdout samplé than the PCR
model with only those factors having eigenvalues greater than one. From
the findings of this study it seems clear that there is a tradeoff between
interpretation of the factors and predictive accuracy for a researcher
estimating a RFPE with a PCR model, and that the decision concerning the num-
ber of retained factors should be based on the primary objective of the study.
If the purpose of the study is structural analysis, then the optimal factor
selection procedure is the eigenvalue-one criterion. However, if the goal is
prediction, then the researcher should fetain the total factor set for
initially estimating the RFPE,

Another tentative conclusion of this study is that a researcher may
find that over time the full-factor PCR model provides better forecasting re-
sults of the sales price of a property than either the OLS or SWR models.
While the differences in the predictive ability in the holdout sample of the

PCR and OLS equations is not dramatic, the dispersion is sufficient to at
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least suggest the possibility that dependency relationships in the OLS
model are less stable than in the PCR model.

Finally, the interesting question remains of whether there would bhe
any further differences in the relative forecasting capabilities of the
alternative techniques when there is'a substantial change in the multicollinear
relationships among the explanatory variables. Since an appraiser or
assessor employing a RFPE for predictive purposes probably has little ex ante
information concerning the stability of the interrelationships over time,
his choice of techniques would be affected by the likely increase of forecast-
ing errors in the future with each model if there are fluctuations in the
inherent multicollinearity. While the samples employed in this study do not
allow forla comprehensive evaluation of this question, this topic is an area

for future research.
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FOOTNOTES

1In order to generate the reduced form from the structural form,

three conditions must be satisfied:

a. A" must exist (i.e., A must be a nonsingular matrix).

b. The underlying individual supply and demand functions must
be continucus and possess continuous first partial deriva-
tives in all functions in order to satisfy the Implicit Function
Theorem.

c. The entrees in the matrix A must be explicitly definable in
terms of o (the endogenous variables) and ﬁhe probability dis-
tribution, H{H), of the disturbance term, [32, p. 102}

Furthermore, if A is not explicitly definable, then the researcher

cannot obtain consistent point estimators of the regression parameter.
The general linear model of housing markets is based upon the Lancaster
model of consumer behavior [21, 22]. If the underlying concepts within
that model are not explicitly definable (e.g., as in c.), then the

Lancaster model is, at least in part, non-testable [8],

2Accessability, measured by distance to market place, has been
theorized as a major determinant of houéing prices by all urban economists
using Von Thu;nenuiike models. Among these writers include Alonzo [1] and
Muth [27]. Also, see Muth for analysis of quality and quantity determi-

nants. FExamples of the analysis of the physical and social environment




33

include Brigham [3], Ridher and Henning [29], and Wercher and Zerbst [33].
Barr [2] examines the effect of the fiscal environment, and Doherty [9]

considers the influence of financing terms on housing prices.

3Unfortunate1y, there is no approprilate statistical Procedure to
test whether a given level of multicollinearity in a data set is statis-
tically significant. While Farrar and Glauber [ 11, p. 101] propose such
a measure, it has been shown to have little value in a sample test (28].
Thus, even though multicéllinearity can be measured, the level at which
it is statistically significant cannot be directly tested in the formula-

tion of a model.

4Another technique, ridge regression, was also tested in the study,
but the results are not included in the paper because of the inability of
the technique to derive a stable model., First proposed by Hoerl and
Kennard [15, 16], ridge regression forms-an estimate of b on the basis of

bx = (X'X + kI)_lX'p _ (5%)

where k > 0 1s a scalar constant and I 48 a m x m identity matrix. The
idea behind the ridge regression technique is that, in a situation of
non-independent explanatory variables, through a careful selection of k
a biased estimator of b can be found, g*, that would be expected to be
closer to the actual population b than g. In essence, the methodology
attempts to reduce the effect of multicollinearity on the estimated co-
efficients by respecifying the model~~in this case by placing a priori

restriction on the value of b, increasing the residual sum of squares,

and potentially reducing the predictive power of the model.
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The only previous application of ridge regression known to the
authors 1n the area of residential appraisal is by Ghurchill [5],
However, unlike the results reported in the Churchiil article, this study
was not able to derive reasonable estimators of the coefficients. In the
fourteen runs (.02 < k < 1) with equation (5*%) performed in this research,
the g*'s did not stabilize at specific values and no clear determination
could be made of the appropriate level for k. The probable explanation
for our conflicting results Is the much larger number of ekplanatory
variables considered in this study (compared to Churchill's thirteen
variables) with a multicollinearity structure more complex than the
relatively simple correlation matrices previously tested. Our tentative
findings tend to question the walue of ridge regression in applied reduced-
form price equations which includg the estimation of a large number of
parameters. For a critical discussion of other problems assoclated with

ridge regression, see Conniffe and Stone [6].

5A more detailed description of the sample and the variables included

in the analysis is provided in the Appendix.

6Various programs in the BMDP package are utilized in this study to
estimate the equations and test for multicollinearity. The primary pro-
grams are BMDPIR (multiple regression}, BMDP2R (stepwise regression), and

BMDP4M (factor analysis).

7The application of this statistic as a measure of multicollineafity
has been proposed in a number of sources, including Farrar and Glauber [11]

and more recently in Mason, Gunst, and Webster [23].
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8See Johnston [17, p. 163], Kmenta [20, p. 390], and Mason, Gunst,

and Webster [23, p. 285].
9Examples include Smith [31]} and Gloudemans aﬁd Miller [12].

10Draper and Smith [10, Chapter 6] provide a thorough description of

the stepwise regression technique.

llThis technique was first proposed by Kendall [19] and explored in

depth by Massy [24]. Among the applications of principal compbnents and
factor analysis in reduced-form price models include Church [4] and Kain

and Quigley [18].

12Instead of estimating the communality of the variables as done in
the common factor model, principal components analysis retains the total
variance and the correlation matrix is factored with 1's in the diagonal.
For a comprehensive description of principal components and factor analy-

sis, consult Harman [14] and Rummel [30].

13In recognition of the nomenclature generally utilized in applied

multivariate analysis, the term "factors" will be employed in this study
instead of "components" to identify the dimensions derived in the principal

components analysis. Technically, this distinction results from the sub-

sequent rotation of the loadings matrix.
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14Other examples of regression coefficients in the OLS equation with

theoretically-incorrect signs include the coefficients for variables COE
(condition of structure--excellent), ORC (club room), CDD (both carpets and
drapes), HTC (central heat), TOCAMPUS (distance to campus), and TQI35 (dis-
tance to major interstate).

lsAt this point a caveat must be given concerning the interpretation
of the results of this study. ‘While the statistical constructs found in this
applicatioﬁ may be the correct measures of the theoretical determinants of

property values in the general housing populaticn, before such a conclusion

is made, further testing should be performed to examine the replication of
these factors with alternative geographical samples, wvariable sets, and
factoring levels.

lﬁSince all dinputs in the PCR equations are in standardized form, the
regression coefficients and the standard error of the estimate will also be
in terms of standardized values. To solve for the unstandardized SEE {for
comparison with the values in the OLS and SWR models), the standardized SEE
is multiplied times the standard deviation of the dependent variable. For

PCR16, the {unstandardized) SEE = $5,649 and for PCR44, SEE = $3,737.

17Nei'ther the OLS nor SWR equations identify the NBRMS variable as

significant,

81n comparing these two statisties, it should be noted that there
is a small difference in the method of calculation of these two measures.
The SEE is formed by dividing the squared errors by n-2, while the RMSE

divides by n.
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19There are also two statistical effects which would tend to cause

the RMSE to be higher than the SEE: (1) sample bias; and, (2) ﬁime trend.
Since in the derivation of the regression equation the least-squares proce-
dure attempts to form a linear function that best fits the particular
characteristics of the analysis sample (characteristics which may not be
common in the population), the predictive ability of the equation would be
expected to have an upward blas in the analysis sample. The forecasting
power of the models in the holdout sample would also be affected by rising
sales prices of bouses over time. With the holdout sample being drawn from
the sales of residences in a period after the sampling for the analysis
group, the holaout observations tend to have higher sales prices--that are
further from the mean value--than would be found in the analysis sample,
Thus, the time trend for the dependent variable would have the effect of in-

creasing the forecasting errors in the holdout sample.
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APPENDIX
SAMPLE DESCRIPTION

The sample used in the statistical analysis of this paper consisted of
732 single-family residences which were offered for sale and sold in Norman,
Oklahoma during the period January 1, 1973 to December 31, 1975. The informa-
tion collected for each observation was determined by two factors: (1) the
appropriate measures of theoretical variable (Section II), and, (2) the
availability of information. The data were gathered from several sources
which included Realtor Multi-List information, 1970 Census data, zoning maps,
and when necessary personal inspection.

The selling price for each house as well as most measures for the
quantity, quality, and financing condition variables were obtained from the

Multi-List Sold Books provided by the Norman Association of Realtors. The

physical and social environmental variable measures were obtained from the
1970 Census of Housing and Population while the measures of accessibility and
fiscal environment were obtained from local zoning maps. A complete listing
of the measures used for each variable and the source of the data is in Table
1A of this Appendix.

The data set was inditially analyzed by calculating the descriptive
statistics for each measure, i,e., means, standard deviations, ranges,
frequency plots, and skewness and kurtosis measures. From this analysis, it
was determined that it would not be necessary to perform any transformation
on the measures (logs, etc.), since they would meet the criteria necessary

for the statistical analysis in their original form. Of course, if the
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objective of the study were to estimate the best regression equation, rather
than to evaluate alternative methods, then several transformations could have
been performed to attempt to improve the fit of the model. Table 2A contains
selected descriptive statistics for the variable measures in the total sample
and Tables 3A and 4A give the pairwise correlation coefficients for the ob-

servations in the analysis and prediction samples.
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TABLE 2A

Variable Mean Standard Deviation Range
1. PRICE 31204.543 12362.773 96,000 ~ 9,000
2. SQFT 1641.802 552.637 4,433 ~ 676
3. LOTSIZE 10176.789 3514.620 37,440 - 1,097
4. BEDRMS 3.254 .588 8 - 2
5. BATHRMS 1,863 .514 3.5-1
6. NBRMS 6.202 1.307 12 - 4
7. YRBUILT 67.980 9.729 75 - 20
8. DATESOLD 58.693 6.392 70 - 41
9. TCF .034 .182 1-0
10. TCB .898 .303 1-20
11. TCR .019 137 I -0
12. TCO 049 216 1~-0
13. FLS .852 .355 1-90
14, FL.C .148 .355 1 -0
15, COE 359 480 1-0
16, CoG . 583 493 1-0
17. COF 057 .233 1-0
18. ORC 214 411 1-0
19. ORU .236 425 1 -0
20. ORD .131 .338 1-0
21. ORO .003 052 i-0
22. PTC .078 .268 1 -0
23. PTO . 366 482 1-20
24, CDC .915 .279 1-0
25. CDD +115 -319 1-0
26, FNS .018 .132 1-0
27. FNC .026 .159 1 -0
28. FNO 143 .351 1 -0
29. OF 116 321 i-20
30. HTC .921 270 1-0
31. HTF .070 .255 1-0
32. CLC . 855 352 1 -0
33, CLW .055 .227 1-0
34, TYLNC . 362 481 1-0
35. TYLNV . 205 404 1 -0
36. TYLNF .313 464 1-0
37. AVEINC -11095.008 2700.623 15,919 - 5,330
38. TOCAMPUS 2.004 .899 5.08 .23
39. TOL35 1,885 1.298 5.84 +23
40, JACKSON .096 .294 1-0
41. CLEVELAND 223 416 1-20
42, WILSON 072 .259 1-0
43, JEFFERSON .070 . 255 1-20
44, EISENHOWER .235 V424 1-20
45. LINCOLN .038 .192 1-0
46, MCKINLEY .061 240 1-20
47. MONROE .105 . 307 1-0
48, KENNEDY . 068 . 252 1 -0
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