CONVERTING INCOME INTO VALUE:

A HANDBOOK FOR REAL ESTATE INVESTORS

FIRST DRAFT

Daniel B. Kohlhepp, Ph.D., MAI^{*}

and

Lin Mao, MSRE, GA^{\dagger}

March 19, 2014

^{*} Senior Lecturer and Academic Director at the Johns Hopkins Carey Business School Edward St. John Real Estate and Infrastructure Program

⁺ Professional Faculty and Academic Program Administrator at the Johns Hopkins Carey Business School Edward St. John Real Estate and Infrastructure Program

PREFACE

August, 2013:

This first draft of Converting Income into Value: a Handbook for Real Estate Investors that will be tested and critiqued by the MSREI Class of 2014 in the Johns Hopkins Carey Business School Edward St. John Real Estate Program. These students will be using this Handbook as they take two, eight-week courses in real estate development.

With their help, the authors hope:

- To refine the text into full paragraphs;
- To find the mistakes that are hidden in the words and equations;
- To include explanatory footnotes and endnotes; and,
- To compile the necessary appendices, index, and bibliography.

We also realize the need for an understandable set of equations, variables, and abbreviations for a cogent text.

We appreciate your understanding and help as we attempt to make the confusing understandable and the oblique straightforward. Real estate investments and valuation is just not that difficult no matter how much our language gets in the way!

TABLE OF CONTENTS

Chapter I	INTRODUCTION	1
A.	Purpose of the Handbook	2
В.	A Little Theory	3
С.	Direct Capitalization Models vs. Discounted Cash Flow Models	4
D.	Capitalization Rates	7
Ε.	Risk-Adjusted Rates of Discount	9
F.	Different Points of View: the Market Value and Investment Value	11
G.	Organization of the Handbook	12
Chapter II	ESTIMATING PROPERTY VALUE (PV) USING DIRECT CAPITALIZATION MODELS (DCMs)	13
Α.	Introduction	14
В.	Gross Income (GI)	15
С.	Effective Gross Income (EGI) and Vacancy and Collection Allowance (VC)	16
D.	Operating Expense (OE)	17
Ε.	Net Operating Income (NOI)	19
F.	Estimating Reversionary Income	20
G.	Overall Capitalization Rate (OCR)	21
Н.	Example: Apartment Building	24
Ι.	Example: Strip Shopping Center	26
J.	Example: Industrial Building	29
К.	Example: Office Building	32
Chapter III	ESTIMATING PROPERTY VALUE USING DISCOUNTED CASH FLOW MODELS (DCFMs)	35
Α.	Introduction	36
В.	Estimating Gross Income (GI)	38
С.	Estimated Vacancy and Collection Losses (VC)	39
D.	Estimating Operating Expenses (OE):	40
Ε.	Estimating Annual Capital Expenditures (CE)	41
F.	Estimating the Holding Period (n)	42
G.	Estimating the Selling Price (SP) of the Property at the end of the Holding Period (r	า) 43
Н.	Estimating the Selling Expenses (SE) Incurred in the property's Sale at end of the	
	Holding Period (n)	44
Ι.	Estimating the Discount Rate (D), aka the Required Internal Rate of Return on Tota	al
	Capital (RIRRtc), aka the Weighted Average Cost of Capital (WACC)	45
J.	Estimating the Property Value (PV)	46
К.	Example: Apartment Building	48
L.	Example: Strip Shopping Center	49
M.	Example: Industrial Building	50
N.	Example: Office Building	51

Chapter IV	EST. MOR	TGAGE LOAN VALUE (LV) USING DIRECT CAPITALIZATION MODELS (DCMs)	53
А.	Intro	oduction	54
В.	Estir	mating Loan Value (LV) using Direct Capitalization Models (DCMs)	57
С.	Exar	nple: Apartment Building	58
D.	Exar	nple: Strip Shopping Center	60
Ε.	Exar	nple: Industrial Building	62
F.	Exar	nple: Office Building	64
Chapter V	EST. MOR	TGAGE LOAN VALUE (LV) USING DISCOUNTED CASH FLOW MODELS (DCFMs)) 66
Α.	Amo	ortization Table	68
В.	Exar	nple: Apartment Building	70
С.	Exar	nple: Strip Shopping Center	72
D.	Exar	nple: Industrial Building	74
E.	Exar	nple: Office Building	76
Chapter VI	ESTIMATI	NG EQUITY VALUE (EV) USING DIRECT CAPITALIZATION MODELS (DCMs)	79
Α.	Intro	oduction	80
В.	Estir	mating Equity Value (EV) Using Direct Capitalization Models (DCMs)	82
С.	Exar	nple: Apartment Building	86
D.	Exar	nple: Strip Shopping Center	88
E.	Exar	nple: Industrial Building	90
F.	Exar	nple: Office Building	92
Chapter VII	ESTIMATI	NG EQUITY VALUE (EV) USING DISCOUNTED CASH FLOW MODELS (DCFMs)	95
Α.	Exar	nple: Apartment Building	96
В.	Exar	nple: Strip Shopping Center	97
С.	Exar	nple: Industrial Building	98
D.	Exar	nple: Office Building	99
APPENDICE	S		100
API	PENDIX A	EQUATIONS AND ABBREVIATIONS	101
API	PENDIX B	THE FINLEY FORM	107
API	PENDIX C	THE BUILDING DEVELOPER'S "BACK-OF-THE-ENVELOPE" (BOTE) ANALYSIS	FOR
		PROJECT FEASIBILITY	117
API	PENDIX D	THE REAL ESTATE INVESTMENT PROCESS	121

Chapter I INTRODUCTION

A. Purpose of the Handbook

The purpose of the Handbook is to help real estate students, practitioners, and longtime experts better understand the conversion of future income into today's value. That is, real estate value is based on the conversion of expected future income into an estimate of today's worth. Probably the oldest and most commonly asked question in real estate is: "how much is it worth?" The second most commonly asked question is: "what is my return?" Of course, those questions are flipsides of each other. If you can estimate what it is worth, you can say what the return is and vice versa. This handbook will focus on the estimation of value as a starting point for understanding what the returns are.

In the world of real estate valuation and investments, there is proliferation of slang, jargon, and semi-technical terms which everyone uses and understands. Unfortunately, everyone uses and understands them differently. This causes a terrific amount of confusion.

For example: capitalization rates may be also referred to as overall returns, cash-on-cash returns, or equity dividend rates. Similarly, riskadjusted the rates of discount may be called the internal rates of return, required rate of returns, or the equity yields.

Thus, another purpose of this Handbook is to help people understand, clarify and differentiate between these multiple terms that are used often interchangeably and usually incorrectly, in the process, convert expected future income into today's value.

B. A Little Theory

The title of this Handbook is *Converting Income to Value*. The value proposition is essentially that the value is equal to the present worth of future benefits. In real estate these future benefits are of two kinds:

- a. First, there are annual benefits in the form of cash flows coming from collecting rent and paying expenses, and
- Second, there is residual income which comes at the end of the holding period when the property is sold, the selling expenses are paid, and the remaining indebtedness is paid off.

Future income is by its nature uncertain. Economic conditions change; government regulations change; alternative investments change; and tastes and preferences change. Also the investor must wait for the future benefits that he/she expects and thereby forego current benefits from other capital investments. Therefore, the "conversion process" must account for the uncertainty or riskiness of the investment as well as the waiting period for the annual and residual incomes.

The conversion of the future income in real estate both annual and reversionary is most often used in the form of two valuation models:

- a. The direct capitalization model, and
- b. The discounted cash flow model.

C. Direct Capitalization Models vs. Discounted Cash Flow Models

The Direct Capitalization Model (DCM) in its most general form is defined as: the value (V) is equal to the income (I) divided by the capitalization rate (R):

[Equation 1]

V = I/Rwhere, V = ValueI = IncomeR = Capitalization Rate

The Capitalization Rate is defined as the annual risk-adjusted rate of discount (r) reduced by the annual expected rate of growth (g), so that:

[Equation 2]

$$R = r - g, \qquad r > g$$

where,

R = Capitalization Rate r = risk-adjusted rate of discount g = annual growth rate of the stream ofincome, (I), that is being valued given that r > g (r is greater than g) The Discounted Cash Flow Model is defined as: value (V) is equal to the sum of the present value of the annual income (AI) plus the present value of the reversionary income (RI) at the end of the holding period (n):

[Equation 3]

$$V = \left(\sum_{t=1}^{n} \frac{AI_t}{(1+r)^t}\right) + \frac{RI_n}{(1+r)^n}$$

where, V = Value

AI = Annual Income

RI = Reversionary Income

r = Risk-adjusted Rate of Discount

n = number of years in the holding period

t = a specified year in the holding period

 $\boldsymbol{\Sigma} = \text{summation of the present values for the Annual Incomes}$

The Risk-Adjusted Rate of Discount, (r), is defined as the sum of a riskfree rate, (rf), and a risk premium, (rp), which accounts for the uncertainty or riskiness of the future benefits.

[Equation 4]

r = rf + rp
where,
rf = a Risk-Free Rate (also called a safe rate)
rp = a Risk Premium that varies depending
on the uncertainty of the future incomes

It should be noted that the above models are very general and need to be modified to reflect the stream of income being valued. For example, the Direct Capitalization Model (DCM) and the DCF Model (DCFM) would be modified differently if the total Property Value (PV) was being estimated or just the Loan Value (LV) or the Equity Value (EV) was being estimated. By way of contrasting and comparing these two models, the following list of bullet points may be helpful:

- The DCM uses capitalization rates, whereas the DCFM uses riskadjusted rates of discount to convert future benefits into a present value estimate.
- The DCM uses a "stabilized" annual income, whereas the DCFM uses year-specific incomes.
- In the DCM, the residual income is implicitly included in the capitalization rate; while in the DCFM, the residual Income is explicitly determined based on the income at the end of the holding period.
- The DCM assumes that the real estate is held to perpetuity while the DCFM assumes a specific time period for the valuation.
- The DCM uses very simple mathematical calculations that can be done with a pencil on "the back of an envelope." However, the DCFM uses more difficult calculations that are done with a calculator or computer.
- DCMs have many implicit assumptions, but the DCFMs have many explicit assumptions.
- DCMs are easy to calculate but hard to explain, but the DCFMs are difficult to calculate but easy to explain.

D. Capitalization Rates

Historically, capitalization rates have been described as being composed of two factors: a return "on" investment and a return "of" investment. The "return on" investment is fairly straight forward; the "return of" investment is less obvious because of the inflationary monetary environment in which we now live. Traditionally, real estate values were expected to decrease over the long run because of the physical deterioration of the improvements. Consequently, an investor would need a premium over the "return on" their investment as compensation for the declining value. However, in our inflationary environment, investors now expect their real estate to increase in value over time so investors are willing to accept a reduction in their "return on" because of the expected increase in the property value. That is to say, a risk adjusted rate of discount (r) was the return "on" while the expected annual rate of growth rate (g) was the return "of" since real estate was often expected to depreciate or decline in value over time.

Thus, a negative growth rate (-g) would reflect an expected declining income stream and property value. For example, if income stream was expected to decrease by 2% per year (g = -2%), and the risk-adjusted rate of discount (r) was 8%, then the capitalization rate would be 10%. Algebraically, this is presented by:

[Equation 2]

$$R = r - g$$

 $R = 8\% - (-2\%) = 8\% + 2\% = 10\%$

On the other hand, if the income stream was expected to increase by 2% per year (g = 2%), and the risk adjusted rate of discount (r) was 8%, then the capitalization rate would be 6%. Algebraically, this is:

[Equation 2]

$$R = r - g$$
$$R = 8\% - 2\% = 6\%$$

Capitalization rates that are used to estimate the total Property Value (PV) are called the Overall Capitalization Rate (OCR), and the capitalization rates that are used to estimate the Equity Value (EV) are called the Equity Dividend Rate (Re). These capitalization rates are also called the "unleveraged cash-on-cash return" and the "leveraged cash-on-cash return," respectively.

The capitalization rates can be determined in two ways: 1) from actual market sales of comparable properties or 2) from active investors in real estate who articulate their expected capitalization rates. Comparable sales are the best way to determine the Overall Capitalization Rates (aka unlevered cash-on-cash return) while investor interviews are the best way to determine the Equity Dividend Rates (aka leveraged cash-on-cash return).

E. Risk-Adjusted Rates of Discount

Discounted Cash Flow Models (DCFM) use a risk-adjusted rate of d discount (r), which theoretically is the rate of return which is required to attract investment capital to the investment opportunity. As such, the risk-adjusted rate of discount can be considered as composing two parts: a risk-free rate (rf) and a risk premium (rp). See Example [4] in the previous section. The risk-adjusted rate of discount can also be shown graphically below:

[Figure 1] Risk Return Trade-off

The rate of return is "adjusted" or increased as the amount of uncertainty or "riskiness" increases regarding the actual realization of the expected benefits from the real estate. The difficult part is determining how to define, measure, or account for the riskiness of an investment. This debate continues today as scholars and investors try to define business risk, inflationary risk, environmental risk, systematic risk, or idiosyncratic risk. Rating companies like Standard and Poor's or Moody's try to measure the level of risk into classification groups (AAA, Baa, etc...), while statisticians measure risk using standard deviations of returns over time. A popular measure of risk is contained in the Capital Asset Pricing Model (CAPM), which looks like Equation 4 above, because it has a risk free rate that is adjusted by the covariance or the expected individual asset's return to the returns on a portfolio of assets, usually leveraged equity securities.³

The risk-adjusted rate of discount used to estimate the Property Value (PV) is often called the Discount Rate (D) or the Required Internal Rate of Return on Total Capital (RIRRtc) while the risk-adjusted rate of discount to estimate Equity Value (EV) is called the Equity Yield Rate (y) or the Required Internal Rate of Return on Equity (RIRRe).

The risk-adjusted rate of discount for estimating the Property Value is also defined as the Weighted-Average Cost of Capital (WACC). The Weighted Average Cost of Capital of a real estate property considers the cost of debt capital [the Interest Rate (i)] and the required risk-adjusted rate of return for equity capital [the equity yield rate (y)] as well as the ratio of debt to equity, which is called the Loan-to-Value ratio (L/V). The loan-to-value ratio is defined as the amount of mortgage debt (L) compared to the total property value (V), and then by definition the amount of equity capital is defined as the compliment of the loan to value ratio or (1 - L/V). Consequently, the Weighted Average Cost of Capital (WACC) for a real estate investment, which is also called the Discount Rate (D) or the Required Internal Rate of Return on Total Capital (RIRRtc), can be defined as:

[Equation 5]

WACC = D = RIRRtc $RIRRtc = [i \times (L/V)] + [y \times (1 - L/V)]$

A market test for the correct risk-adjusted rate of discount is to compare the expected return on other assets relative to the real estate investment under consideration. In this way, the appropriate riskadjusted rate of discount can be bracketed.

There are many, regularly published, real estate investor surveys in which active (usually institutional) investors are asked what their target (or Required) IRR's are. These are usually reported for unleveraged (RIRRtc) and leveraged (RIRRe) returns.

³ The Capital Asset pricing Model is usually specified as... where...

F. Different Points of View: the Market Value and Investment Value

Real estate appraisers estimate the value of real estate from the overall market point of view. That is, they are reflecting the general consensus of the market participants' opinion or estimation of value. This is usually called the Market Value of the property, and there are numerous conditions or qualifications of a Market Value estimate. The Market Value represents an objective point of view from the perspective of a typical buyer and a typical seller, neither party of which is under duress and both parties of which have excellent information about future market conditions, competitive properties, and typical financing conditions. The transaction is expected to be all cash and subject to another dozen "limiting conditions and assumptions."

On the other hand, individual real estate investors are interested in their particular investment and market expectations, and they are interested in estimating the Investment Value of a property to them under all of the unique and unusual conditions of the sale. This is a very subjective estimate, and one that is unique to the individual investor. It considers the financial constraints and opportunities of the particular investor.

However, whether the point of view is objective and market-oriented or subjective and specific-investor oriented, the same techniques are used to convert future income into today's value.

G. Organization of the Handbook

Part II of the Handbook discusses the process of estimating the property value of real estate using Direct Capitalization Models (DCM). First, the estimate of a stabilized annual Net Operating Income (NOI') is determined and then the consideration of the reversionary income is discussed. Next, the determination of the appropriate Overall Capitalization Rate (OCR) is discussed in terms of market observations as well as investor derivations. Examples of the estimation process are then reviewed for an apartment, a retail center, a warehouse, and an office building.

Part III of the Handbook discusses the process of estimating the property value of real estate using a Discounted Cash Flow Model (DCFM). The estimation for Net Operating Income (NOI) for every year of the holding period is considered along with the estimation of the Net Sales Prices (NSP) at the end of the holding period. Next, the estimation of the appropriate risk-adjusted rate of discount is discussed. This is followed by the estimation of the Part II examples using DCFMs.

Part IV discusses the mathematics of amortized mortgages as well as the estimation of the value of mortgages using DCMs and DCFMs.

Part V demonstrates the estimation of the value of an equity investment using both OCMs and DCFMs.

Appendix A is a summary of equations and abbreviations.

Appendix B is a discussion of the Finley Form, which is a mortgageequity approach to estimating property value using debt coverage ratios and leveraged cash-on-cash returns.

Appendix C discusses project feasibility using Overall Capitalization Rates.

Chapter II ESTIMATING PROPERTY VALUE (PV) USING DIRECT CAPITALIZATION MODELS (DCMs)

A. Introduction

The Property Value of a piece of real estate is estimated by dividing the "Stabilized" Net Operating Income (NOIs) by the Overall Capitalization Rate (OCR)

[Equation 6]

```
PV = NOIs/OCR
where,
PV = Property Value
NOI_s = stabilized Net Operating Income
OCR = Overall Capitalization Rate
```

[Equation 7]

NOIs = GI - VC - OE

where,

GI = Gross Income VC = Vacancy and Collection Allowance OE = Operating Expenses including Reserves for Wasting Parts

[Equation 8]

[8a]	OCR = D -	(% Apr)
------	-----------	---------

[8b]	OCR = D + (%Dpr)
------	------------------

where,

OCR = Overall Capitalization Rate D = Discount Rate = WACC = RIRRtc WACC = Weighted Average Cost of Capital RIRRtc = Required Internal Rate of Return on Total Capital %Apr = annual rate of property Appreciation %Dpr = annual rate of property Depreciation

B. Gross Income (GI)

The Gross Income (GI) is the total possible income that can be generated from an income producing property over a 12-month period. Sources of income include rental income (RI), parking income (PI), and other miscellaneous income (OI) such as vending machines and billboards.

[Equation 9]

GI = RI + PI + OI where, GI = Gross Income RI = Rental Income PI = Parking Income OI = Other Miscellaneous Income

C. Effective Gross Income (EGI) and Vacancy and Collection Allowance (VC)

The Effective Gross Income (EGI) is the actual or expected income that will be collected over a twelve-month period. The difference between the Gross Income and the Effective Gross Income is called the Vacancy and Collection Allowance (VC). The Vacancy and Collection Allowance is due to actual vacant space or rental units as well as bad debts or uncollectable rent.

[Equation 10]

$$EGI = GI - VC$$

where, EGI = Effective Gross Income GI = Gross Income VC = Vacancy and Collection Loss

The Vacancy and Collection Allowance reflects the robustness of the real estate markets. A very strong market will have a low vacancy rate while a soft or sluggish market will have a high vacancy rate.

D. Operating Expense (OE)

Operating Expenses (OE) are those expenses that relate directly to the operation of the real estate property. They do not include financing expenses, personal expenses, or income tax expenses. Operating Expenses (OE) are divided into two groups: annual cash expenses and annualized non-cash reserve allowances. Operating expenses do not include financing costs such as interest and amortization payments and do not include income tax payments. Operating expenses are related to the operation of property and compliance with the lease provisions and are not dependent on specific financing or individual owners. The operating expenses may include some or all of the following:

- Management Expenses
- Legal and Accounting Expenses
- Repairs and Maintenance
 - Labor
 - Supplies
- Leasing Commissions
- Landscaping and Lawn Maintenance
- Snow Plowing and Ice Removal
- Real Estate Taxes
- Property Insurance
- Advertising
- Decorating
- Cleaning and Janitorial Expenses

The second type of expenses is allowance for wasting parts. These allowances can be used to annualize certain costs which are not annual in nature, but are predictable and do occur regularly. Examples of these expenses are:

- Major Appliance Replacements
- Carpet Replacements
- Tenant Improvements
- Painting
- Asphalt Parking Lot Replacements
- Roof Replacements

Often the Operating Expenses (OE) are lumped together and expressed as a percentage of Effective Gross Income (EGI). This is called the Operating Expense Ratio (OER).

[Equation 11]

$$OER = OE/EGI$$

where, OER = Operating Expense Ratio OE = Operating Expenses EGI = Effective Gross Income

E. Net Operating Income (NOI)

The Net Operating Income (NOI) is calculated by deducting the Operating Expenses (OE) from the Effective Gross Income (EGI). The calculation is as follows:

less	Gross Income (GI) Vacancy and Collection (VC)		
equal	Effective Gross Income (EGI)		
less	Operating Expenses (OE)		
equal	Net Operating Income (NOI)		

[Equation 7]

NOI = GI - VC - OE

The Net Operating Income (NOI) used in Direct Capitalization Models (DCMs) is said to be "stabilized", and it is abbreviated as NOIs ("NOI" with a lowercase "s"). The NOIs is stabilized because it uses an average Vacancy and Collection Allowance and an average Operating Expense amount. Clearly, this is one of the limitations of the DCMs since a "stabilized" year may not be representative of the property's future performance. If the future income is highly variable, the "riskiness" would be reflected in the Overall Capitalization Rate. On the other hand, sometimes the DCM is just not an appropriate method to estimate a property's value.

F. Estimating Reversionary Income

In DCMs the expected reversionary income from the eventual sale of the property is not directly estimated. Rather, the expected reversionary income is reflected in the Overall Capitalization Rate as an annual rate of appreciation or depreciation. The annual rate of property appreciation is subtracted from the Discount Rate, or the annual rate of property depreciation is added to the Discount Rate to determine the Overall Capitalization Rate.

G. Overall Capitalization Rate (OCR)

The Net Operating Income (NOI) is subject to all of the business risks of real estate. The NOI is an unleveraged income stream, that is, no finance payments are included. Consequently, no financial risks are involved.

The Overall Capitalization Rate (OCR) is composed of the sum of 1) the Discount Rate (D) and 2) the annual Appreciation Rate of the property (%Apr) or the annual Depreciation Rate of the property (%Dpr).

[Equation 8]

[8a] OCR = D - (%Apr)[8b] OCR = D + (%Dpr)

> where, OCR = Overall Capitalization Rate D = WACC = RIRRtc, %Apr = annual rate of property Appreciation %Dpr = annual rate of property Depreciation

The Discount Rate (D) is the risk-adjusted "return on" the investment. As such, it is the risk-free rate plus a risk premium.

Graphically, this is show as follows:

[Figure 2] Discount Rate

Business Risk

The Discount Rate (D) is also referred to as the Weighted-Average Cost of Capital (WACC) because it reflects the cost of debt capital or interest (i) and the cost of equity capital or equity yield rate (y) weighted by their relative share of the total capital structure. For example:

[Equation 5]

$$WACC = D$$
$$WACC = [i \times (L/V)] + [y \times (1 - L/V)]$$

The Discount Rate is also the same as the Required Internal Rate of Return on Total Capital (RIRRtc).

The Overall Capitalization Rate is sometimes referred to as a "Free and clear" return because it does not include any financing costs such as interest, loan amortization, or financing fees.

H. Example: Apartment Building

Assumptions: Income

- Four (4) one-bedroom (1BR) apartments at \$600 per month
- Four (4) two-bedroom (2BR) apartments at \$800 per month

Calculations:	
One-bedroom Rent	$4 \times $600 \times 12 = 28,800$
Two-bedroom Rent	$4 \times \$800 \times 12 = 38,400$
Gross Income (GI)	\$ 67,200

Assumptions: Vacancy and Collection Loss

• Vacancy and collection allowance is estimated to be 10% of Gross Income

Calculations:		
Gross Income (GI)	\$ 67,200	
Vacancy & Collection Loss (VC) @ 10% of GI	\$ 6,720	
Effective Gross Income (EGI)	\$ 60,480	

Assumptions: Operating Expense

• Operating Expense Ratio is 30%

Calculations:	
Effective Gross Income (EGI)	\$ 60,480
Operating Expenses (OE) @ 30% of EGI	\$ 18,144
Net Operating Income (NOIs)	\$ 42,336

Assumptions: Financing

- Equity Yield Rate is 15%
- Interest Rate is 6% for thirty (30) years with annual payments
- Loan to Value Ratio is 75%
- Annual Rate of Property Appreciation is 1%

Calcula	itions:		
S	tabilized Net Operating	Income (NOI _s)	\$ 42,336
D	Discount Rate (D)		
	(0.75 >	< 0.15) + (0.25 × 0.06)) = 8.25%
0)verall Capitalization Rat	te (OCR)	
		0.0825 - 0.02	1 = 7.25%
Р	Property Value (PV)	\$42,336 ÷ 0.0725 =	\$ 583,945

I. Example: Strip Shopping Center

Assumptions: Income

- Net Leasable Area (NLA) is 8,000 square feet
- Retail rental rate is \$8.00 per square foot (psf) per year

Calculations:

Gross Income (GI)

 $8,000 \times \$8.00 = \$64,000$

Assumptions: Vacancy

• Annual Vacancy and Collection Allowance (VC) is estimated to be 5% of Gross Income

Calculations:	
Gross Income (GI)	\$ 64,000
Vacancy and Collection Loss (VC) @ 5% of GI	\$ 3,200
Effective Gross Income (EGI)	\$ 60,800

Assumptions: Operating Expense

- Real Estate Taxes are \$0.39 psf per year
- Common Area Maintenance (CAM) charges are \$2.00 psf per year
- Management and Leasing fees are 5% of collected rents per year (EGI)
- Accounting, Legal, and Other Professional Expenses average \$2,000 per year
- Carpet is replaced every five (5) years and costs \$27.00 per square yard installed
- Asphalt Roof Built-up costs \$20,000 and lasts twenty (20) years
- Four (4) HVAC Units cost \$2,000 per unit and lasts ten (10) years

Calculations:	
Effective Gross Income (EGI	\$ 60,800
Operating Expenses (OE)	
Real Estate Taxes	\$0.39 × 8,000 = \$ 3,120
САМ	\$2 × 8,000 = \$ 16,000
Management (% of EGI)	$0.05 \times 60,800 = 3,040$
Accounting, Legal, Other	\$ 2,000
Carpet Allowance (\$2	$7 \div 9 \div 5) \times 8,000 = $4,800$
Roof Allowance	\$20,000 ÷ 20 = \$ 1,000
HVAC Allowance	$($2,000 \div 10) \times 4 = 800
TOTAL EXPENSES	\$ 30,760
Stabilized Net Operating Inc	come (NOIs) \$ 30,040

Assumptions: Financing

- Mortgage Interest Rate is 6%, amortized over thirty (30) years with annual payments
- Loan-to-Value Ratio is 75%
- The Property is expected to increase annually at 1.5%
- Equity Yield Rate (y) is 15%

Calculations:			
Stabilized Net Operating Income (NOIs)		\$ 30,040	
Discount Rate (D)			
$(0.75 \times 0.06) + (0.25 \times 0.15) = 8.25\%$			
Overall Capitalization Rate (OCR)			
	0.0825 -	0.015 = 6.75%	
Property Value	\$30,040 ÷ 0.067	75 = \$ 445,037	

J. Example: Industrial Building

Assumptions: Income

- 50,000 Square feet of Net Leasable Area (NLA)
- Leased for 20 years to a single-user for an office/manufacturing complex on a triple net basis (NNN)⁴
- Rental rate is \$2.25 per net leasable foot

Calculations:		
Gross Income (GI)	\$2.25 × 50,000 = \$ 112,500	

Assumptions: Vacancy

- The tenant has an AAA credit rating and intends to be in the building for the duration of the lease (20 years)
- The estimated vacancy and collection allowance is estimated to be 0% of Gross Income

Calculations:		
Gross Income (GI)	\$ 112,500	
Vacancy and Collection Loss (VC) @ 0% of GI	\$ 0	
Effective Gross Income (EGI)	\$ 112,500	

⁴ A triple net lease (NNN) means a tenant, typically in retail, pays the Common Area Maintenance (CAM), insurance, and taxes.

Assumptions: Operating Expense

- Management fees are 1% of Effective Gross Income
- Legal and Accounting fees are \$2,000 per year
- Single membrane rubber roof costs \$2.50 per square foot and has a 10-year remaining life

Calculations:	
Effective Gross Income (EGI)	\$ 112,500
Operating Expenses (OE)	
Real Estate Taxes (Net)	0
CAM (Net)	0
Management (% of EGI) $0.01 \times 112	2,500 = 1,125
Accounting, Legal, Other	\$ 2,000
Roof Allowance $$2.5 \times 50,000 \div$	10 = 12,500
TOTAL EXPENSES	\$ 15,625
Stabilized Net Operating Income (NOIs) \$96,87	
Assumptions: Financing

- Mortgage Loan has an interest rate of 5.5%, a 30-year amortization term with annual payments, and a Loan-to-Value Ratio of 90%
- The typical investor requires an equity yield of 15%
- Property annual depreciation rate is 1%

Calculations:			
Net Operating Income	(NOIs)	\$ 96,875	
Discount Rate (D)			
(0.9	$9 \times 0.055) + (0)$	$.1 \times 0.15) = 6.45\%$	
Overall Capitalization I	Rate (OCR)		
	0.06	45 + 0.01 = 7.45%	
Property Value (PV)	\$96,875 ÷ 0.	0745 = \$ 1,300,336	

K. Example: Office Building

Assumptions: Income

- Ten-story office building
- Gross Building Area is 110,000 square feet
- Net Leasable Area (NLA) is 100,000 square feet
- Rental Rate is \$30.00 per square foot of NLA
- Parking Income is \$5,000 per month

Calculations:	
Rental Income (RI)	30 × \$100,000 = \$ 3,000,000
Parking Income (PI)	\$5,000 × 12 = \$ 60,000
Gross Income (GI)	\$ 3,060,000

Assumptions: Vacancy

• Vacancy and collection allowance is estimated to be 10% of Gross Income

Calculations:	
Gross Income (GI)	\$ 3,060,000
Vacancy and Collection Loss (VC) @	2 10% of GI \$ 306,000
Effective Gross Income (EGI)	\$ 2,754,000

Assumptions: Operating Expense

- Operating Expenses are \$10.00 psf per year
- Reserve for wasting parts is \$50,000 annually

Calculations:	
Effective Gross Income (EGI)	\$ 2,754,000
Operating Expenses	10 × 100,000 = \$ 1,000,000
Reserve	\$ 50,000
Total Expenses and Reserve ((OE) \$ 1,050,000
Stabilized Net Operating Inco	me (NOIs) \$ 1,704,000

Assumptions: Financing

- Mortgage of 30 years, 7% interest, and L/V of 70%
- The typical investor requires an equity yield of 18%
- The property's annual appreciation rate is 2%

Calculatio	ons:			
Stal	bilized Net Oper	ating Income	(NOIs)	\$ 1,704,000
Dise	count Rate	(0.7 × 0.07) -	+ (0.3 × 0.1	8) = 10.30%
Ove	erall Capitalizatio	on Rate	0.1030 - 0	0.02 = 8.30%
Pro	perty Value	\$1,704,000) ÷ 0.083 =	\$ 20,530,120

Chapter III ESTIMATING PROPERTY VALUE USING DISCOUNTED CASH FLOW MODELS (DCFMs)

A. Introduction

- DCFM's use more complicated math than Direct Capitalization Models (DCM's), but the math is intrinsically simple.
- DCFM's allow the analyst to recognize specific features of the investment on an annual basis. By contrast, DCM's use a stabilized Net Operating Income for the duration of the investment.
- DCFMs allow and require the analyst to think it through the real estate investment.
- DCM's are good to screen potential investment opportunities, while DCFM's must be used to understand how value is created and realized in the investment.
- DCFM's can be used in pre-programmed or "canned" models or they can be developed by the analyst. Financial institutions prefer to use pre-programmed models like ARGUS, while individual investors can build their own models on electronic spreadsheets like Excel.
- DCFMs allow the analyst to recognize the sage advice for investors: "if you can't model a project on paper, then you can't build it in real life."

• The Discounted Cash Flow Model to estimate Property Value:

[Equation 12]

$$PV = \sum_{t=1}^{n} \frac{GI_t - VC_t - OE_t - CE_t}{(1+D)^t} + \frac{SP_n - SE_n}{(1+D)^n}$$

where,

PV = Property Value

GI = Gross Income

VC = Vacancy and Collection Allowance

OE = Operating Expenses

CE = Capital Expenditure

SP = Selling Price

SE = Selling Expenses

D = Discount Rate, aka the weighted average cost of capital (WACC), aka the required internal rate of return on total capital (RIRRtc)

B. Estimating Gross Income (GI)

- DCFMs allow analysts to recognize annual changes in rental income
 - o Stepped up leases
 - Percentage leases
 - o Lease renewal rates
 - Lease rollovers to market rent levels
 - Free-rent periods
- DCFM's allow analysts to recognize different types of leases for different types of users with different rent provisions, especially in mixed-use projects
 - Retail leases
 - Office leases
 - Apartment leases
 - Out-parcel ground leases
- Rent from other sources can be recognized in DCFM's
 - Parking income
 - o Concession income like laundry income
 - Special events leases

C. Estimated Vacancy and Collection Losses (VC)

- DCFM's allow analysts to recognize different types of users and lessees with different kind of vacancy expectations
- DCFM's allow analysts to recognize different leases with different expiration dates and different renewal provisions
 - Probability of renewal
 - Remarketing time if not renewed

D. Estimating Operating Expenses (OE):

- Analysts can recognize normal cash operating expenses
 - Same operating expense as DCM's but now the analyst can recognize expense that vary over time
 - Customary reserves for regularly occurring expenses may be used as a yearly expense or the expected expense may be tied to specific leases or specific expenses
- Large reserves for wasting assets do not need to be set up annually unless the cash is actually put into a separate reserve account and not available for distribution to investors
- Large capital expenditures should not be included in a DCFM model as "operating expenses"
- Expense reimbursements can be modeled to recognize different expenses that are passed through to tenants or are subject to a "cap" over which tenants are charged for reimbursements
- Expense related to financing should not be included as operating expense (e.g. interest, amortization, origination, fees, or participating loan features)
- Non-cash expense should not be included as operating expenses such as building or equipment amortization
- Income tax expenses should not be included as operating expenses
- Personal expenses such as entertainment, travel, or clothing should not be included as operating expenses
- Typical operating expenses are included in:
 - Office buildings
 - Apartments
 - Warehouses
 - o Retail

E. Estimating Annual Capital Expenditures (CE)

- While the DCMs use an annual allowance for capital expenditures, DCFMs recognize capital expenditures in the year that they actually occur
- Capital expenditures are basically any expenditure that would be depreciated for accounting or tax purposes
- Capital expenditures could include the following:
 - o Major tenant improvements
 - Major leasing commissions
 - Roof replacements
 - Major appliances (washers, dryers, stoves, refrigerators, etc)
 - Parking lot replacement
 - Heating, ventilation, and air conditioning (HVAC) systems
 - o Landscaping
 - Tenant signs and building signage
- The exception to these capital expenditure is when actual annual cash contributions are made to a specific reserve account and are not available for distribution

F. Estimating the Holding Period (n)

- DCFMs assume a "typical" holding period for the projections
- The convention is 10 years, but this was based on the accountsants' ability to display 10 years on an 8.5 by 11 inch page using a "landscape" orientation, 10-pitch, and a matrix printer. Clearly, this is no longer a condition.
- Also, five years was used as a typical holding period because accountants could place five-year projections on an 8.5 by 11 inch page using a "portrait" orientation.
- The appropriate holding period depends on the investor's objective and property's business plan
- Analysts can determine that holding period that maximizes the property value by using a "sensitivity" analysis, which involves varying the holding period to see when the highest property value is reached

G. Estimating the Selling Price (SP) of the Property at the end of the Holding Period (n)

- The estimated selling price at the end of the holding period is usually based on the projected future income of the property
- Typically the selling price is estimated using a direct Capitalization Model (DCM), example:

[Equation 13]

 $SP_n = NOI_{n+1}/OCR$ where, $SP_n = Selling$ Price in year n $NOI_{n+1} = Net$ Operating Income in year n+1 OCR = Overall Capitalization Rate

- The sale of the property is expected to occur on the last day of the holding period (n)
- Consequently, the selling price (SP) for the holding period (n) is based on the estimated stabilized Net Operating Income (NOI) for the next year—one year beyond the holding period (n+1)
- The Overall Capitalization Rate (OCR) used to estimate the future sales price of the property is problematic. Most of the time, analysts use the current OCR and assume that the capital market conditions will not change much over the holding period. This is a heroic assumption, but one that is usually made.

H. Estimating the Selling Expenses (SE) Incurred in the property's Sale at end of the Holding Period (n)

- Real estate sales have high transaction costs relative to other asset sales
- Typical transaction costs may include:
 - Brokerage commissions
 - Deed recording and mortgage costs at the county (or city) courthouse
 - Environmental reports
 - Title reports and title insurance
 - o Survey costs
 - Loan prepayment or payoff fees
 - Property inspection reports
 - Marketing and advertising expenses
- While many of these costs are pro-rated or negotiated between the buyer and seller, it is reasonable to assume that there will be substantial closing costs
- The closing costs typically range between 5 to 10 percent of the sale price
- The Net Sales Price (NSP) is usually defined as the Sales Price (SP) minus the Selling Expenses (SE)

- I. Estimating the Discount Rate (D), aka the Required Internal Rate of Return on Total Capital (RIRRtc), aka the Weighted Average Cost of Capital (WACC)
 - The Discount Rate (D) is a risk-adjusted rate of discount
 - It is equal to the "safe rate" plus a "risk premium" that is based on all of the "business risks" involved with owning real estate assets
 - The Discount Rate (D) is also called the Required Internal Rate of Return on Total Capital (RIRRtc). It is the rate of return that is required to attract capital to the real estate investment. It is influenced by the rates of return that are available from alternative investments (stocks and bonds) or other real estate investments adjusted for the level of risk
 - The WACC is based on the required Equity Yield (y) for leveraged real estate Investments as well as the Interest Rate (i), both of which are weighted" or adjusted for their relative portion of the total capital stack
 - The WACC is usually defined as

[Equation 5]

WACC = D = RIRRtc $RIRRtc = i \times (L/V) + y \times (1 - L/V)$

 The Discount Rate (WACC or RIRRtc) is used to discount the stream of cash income that is associated with the ownership of the real estate, before financing costs, and non-cash accounting adjustments but after capital expenditures

J. Estimating the Property Value (PV)

- If the variable input values are based on "typical" investor expectations, then the PV would be the "Market Value" of the property
- If the variable input values are based on a particular investor's expectation then the PV would be the "Investment Value" of the property
- The buyer's Investment Value is defined as the most the buyer can pay for a property and still achieve his/her investment objectives
- The seller's Investment Value is defined as the lowest that a seller can sell the property for and still achieve his/her investment objectives
- The Transaction Price is the negotiated price between the buyer and the seller when the buyer's Investment Value is less than or equal to the seller's Investment Value

Buyer's Investment Value ≥ Transaction Price ≥ Seller's Investment Value

K. Example: Apartment Building

Assumptions: Income and Expense Escalation

- Annual rent escalation of 1.00%
- Operating Expense is 30% of Effective Gross Income
- Sale expense of 5%

PROF	PERTY VALUE DISCOUN	TED CASH FLOW							
_				Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
Ir	ncome	1.00%	6 escal						
	Gross Income			67,200	67,872	68,551	69,236	69,929	70,628
	Vacancy & Collection L	oss 10.009	6 of GI	6,720	6,787	6,855	6,924	6,993	7,063
	Effective Gross Income	2		60,480	61,085	61,696	62,313	62,936	63,565
0	perating Expenses	30.009	6 of EGI	18,144	18,325	18,509	18,694	18,881	19,070
N	et Operating Income			42,336	42,759	43,187	43,619	44,055	44,496
Р	roperty Sale								
	Sale Price	7.25%	6 OCR					613,732	
	Sale Expense	5.00%	6 of SP					30,687	
	Net Sale Price							583,045	
Т	otal CF before Debt Servi	ice		42,336	42,759	43,187	43,619	627,100	
P	roperty Value								
	Discount Rate	8.259	6	92.38%	85.34%	78.83%	72.83%	67.28%	
	Property Value	\$ 563,300	1	39,109	36,490	34,046	31,766	421,888	

L. Example: Strip Shopping Center

Assumptions: Income and Expense Escalation

- Annual rent escalation of 1.50%
- Annual expense escalation of 1.50%
- Sale expense of 5%

ROPERTY VALUE DISCOUNTED	CASH FLOW							
			Year 1	Year 2	Year 3	Year 4	Year 5	Year
Income	1.509	% escal						
Gross Income			64,000	64,960	65,934	66,923	67,927	68,946
Vacancy & Collection Loss	5.009	% of GI	3,200	3,248	3,297	3,346	3,396	3,447
Effective Gross Income			60,800	61,712	62,638	63,577	64,531	65,499
Operating Expenses	1.509	% escal						
Real Estate Taxes	\$ 0.39) psf/yr	3,120	3,167	3,214	3,263	3,311	3,361
CAM	\$ 2.00) psf/yr	16,000	16,240	16,484	16,731	16,982	17,237
Management	55	6 of EGI	3,040	3,086	3,132	3,179	3,227	3,275
Accounting, Legal, Other	\$ 2,000) /yr	2,000	2,030	2,060	2,091	2,123	2,155
Total Expenses			24,160	24,522	24,890	25,264	25,643	26,027
Net Operating Income			36,640	37,190	37,747	38,314	38,888	39,472
Property Sale								
Sale Price	6.755	6 OCR					584,766	
Sale Expense	5.009	% of SP					29,238	
Net Sale Price							555,527	
Total CF before Debt Service			36,640	37,190	37,747	38,314	594,416	
Property Value								
Discount Rate	8.25	6	92.38%	85.34%	78.83%	72.83%	67.28%	
Property Value	\$ 523,144	1	33,848	31,737	29,758	27,902	399,899	

M. Example: Industrial Building

Assumptions: Income and Expense Escalation

- Annual rent escalation of 0.00%
- Annual expense escalation of 1.00%
- Sale expense of 10%

ROPERTY VALUE DISC	COUNTED CAS	H FLOW							
				Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
Income		0.00%	escal						
Gross Income				112,500	112,500	112,500	112,500	112,500	112,500
Vacancy & Collect	tion Loss	0%	of GI	-	-	-	-	-	-
Effective Gross In	icome			112,500	112,500	112,500	112,500	112,500	112,500
Operating Expenses		1.00%	escal						
Real Estate Taxes	(Net)			-	-	-	-	-	-
CAM (Net)				-	-	-	-	-	-
Management		1%	of EGI	1,125	1,125	1,125	1,125	1,125	1,125
Accounting, Legal	l, Other	\$ 2,000	/yr	2,000	2,020	2,040	2,061	2,081	2,102
Total Expenses				3,125	3,145	3,165	3,186	3,206	3,227
Net Operating Incom	e			109,375	109,355	109,335	109,314	109,294	109,273
Property Sale									
Sale Price		7.45%	OCR					1,466,751	
Sale Expense		10.00%	of SP					146,675	
Net Sale Price								1,320,076	
Total CF before Debt	Service			109,375	109,355	109,335	109,314	1,429,370	
Property Value									
Discount Rate		6.45%		93.94%	88.25%	82.90%	77.88%	73.16%	
Property Value		\$ 1,420,747		102,748	96,504	90,640	85,132	1,045,722	

N. Example: Office Building

Assumptions: Income and Expense Escalation

- Annual rent escalation of 2.00%
- Annual expense escalation of 2.00%
- Sale expense of 5%

ROP	ERTY VALUE DISCOUI	NTED CASH	FLOW								
-						Year 1	Year 2	Year 3	Year 4	Year 5	Year
In	come			2.00%	escal						
	Gross Income					3,060,000	3,121,200	3,183,624	3,247,296	3,312,242	3,378,487
	Vacancy & Collection	Loss		10%	of GI	306,000	312,120	318,362	324,730	331,224	337,849
	Effective Gross Incom	e				2,754,000	2,809,080	2,865,262	2,922,567	2,981,018	3,040,639
0	perating Expenses		_	2.00%	escal						
	Operating Expenses		\$	10.00	psf/yr	1,000,000	1,020,000	1,040,400	1,061,208	1,082,432	1,104,081
	Reserve		\$	50,000	peryr	50,000	51,000	52,020	53,060	54,122	55,204
	Total Expenses & Res	erve				1,050,000	1,071,000	1,092,420	1,114,268	1,136,554	1,159,285
Ne	et Operating Income					1,704,000	1,738,080	1,772,842	1,808,298	1,844,464	1,881,354
Pr	operty Sale										
	Sale Price			8.30%	OCR					22.666.912	
	Sale Expense			5.00%	of SP					1,133,346	
	Net Sale Price									21,533,566	
То	otal CF before Debt Serv	/ice				1,704,000	1,738,080	1,772,842	1,808,298	23,378,031	
Pr	operty Value										
	Discount Rate			10.30%		90.66%	82.20%	74.52%	67.56%	61.25%	
_	Property Value		\$ 19	9,835,920		1,544,878	1,428,627	1,321,123	1,221,710	14,319,583	

Chapter IV ESTIMATING MORTGAGE LOAN VALUE (LV) USING DIRECT CAPITALIZATION MODELS (DCMs)

A. Introduction

- The property value (PV) or total value of a parcel of real estate can be divided into the types of capital that is used to acquire it: debt capital (LV) and equity capital (EV)
 - Debt capital is usually called a mortgage or a loan and is usually represented as (L). Debt capital is usually secured by a lien on the property and has a preferred claim on the Net Operating Income (NOI) relative to equity capital.
 - Equity capital (E) is subordinate to the Debt Capital and consequently has a higher risk profile. The equity capital is usually considered the ownership of the property.
- The Loan Value (LV) can be estimated using either a Direct Capitalization Model (DCM) or at Discounted Cash Flow Model (DCFM)
- The DCM is very simple mathematically, but several assumptions are imbedded in the calculations. It is very difficult to value complex financing structure using DCM
- The DCFM is more complicated mathematically; however it is much easier to explain the financial arrangement that is under consideration
- The Debt Payment (DP) used in both models includes both the interest payment and the amortization payment. Usually the DP used in the models is an annualized amount. However, the annual DP can vary depending on the number of debt payments that are made each year. Debt payments can be monthly (12 per year), bi-monthly (6 per year), quarterly (4 per year), semi-annually (2 per year), or annually (1 per year).
- To calculate the annual DP, the periodic debt payment must be calculated and then multiplied by the number of payments per year
- The periodic interest rate is the annual interest rate divided by the number of payments. For example, an annual rate of 6% would have a monthly rate of .5% (0.06/12), a quarterly rate of 1.5% (0.06/4), or a semi-annual rate of 3% (0.06/2).
- The total periodic payments must be representative of the payments per year. For example, a mortgage loan with a 10-year amortization period would have total monthly payments of

120 (10×12), total quarterly payments of 40 (10×4) or total semi-annual payments of 20 (10×2).

- Mortgage Constants (MC) are used to calculate the Mortgage Value in the DCM, and Mortgage Constants are used to calculate the periodic DP in the DCFM
- The Mortgage Constant is a capitalization rate and consequently it has a "return on" component, the interest (i), and a "return of"" component, Sinking Fund Factor (SFF), so that the:

[Equation 14]

$$MC = i + SFF$$

[Equation 15]

$$SFF = \frac{i}{(1+i)^n - 1}$$

where,

i = Periodic Interest Raten = total number of periods in the amortization term

 The annual Debt Payment (DP) is usually determined by the Debt Coverage Ratio (DCR), which measures the extent to which the Net Operating Income (NOI) exceed the annual Debt Payment

[Equation 16]

DCR = NOI/DP where, DCR = Debt Coverage Ratio NOI = Net Operating Income DP = Debt Payment

• The Debt Coverage Ratio is a measure of default risk used by lender so the higher the perceived lending risk, the higher the DCR

• The amount of the Loan Value is usually constrained by the Loan-to-Value Ratio (LTV), which is defined as the Loan Value (LV) divided by the Property Value (PV):

[Equation 17]

L/V = LV/PV

where, L/V = Loan-to-Value Ratio LV = Loan Value PV = Property Value

• The Loan-to-Value is a measure of liquidity in the event of default on the loan so the greater the risk perceived by lenders, the lower the Loan-to-Value Ratio

B. Estimating Loan Value (LV) using Direct Capitalization Models (DCMs)

• The conceptual direct capitalization model (V=I/R) is modified to estimate the Loan Value (LV) so that annual Debt Payment (DP) is divided by the annualized Mortgage Constant (MC):

[Equation 18]

$$LV = DP/MC$$

[Equation 19]

$$DP = NOI / DCR$$

[Equation 14]

$$MC = i + SFF$$

where, i = Annualized Interest Rate on the Loan

[Equation 15]

$$SFF = \frac{i}{(1+i)^n - 1}$$

where,

SFF = Annualized Sinking Fund Factor for the Amortization Period of the Loan

• The Debt Payment is assumed to be a constant amount over the amortization period

C. Example: Apartment Building

Calculations:	
Loan Interest (i) @ known	6.00%
Loan Term @ known	30 years (annually)
Sinking Fund Factor (SFF)	
$0.06 \div [(1$	$+0.06)^{30} - 1] = 1.26\%$

6.00%
1.26%
6 + 0.0126 = 7.26%

Assumptions: Loan

• For this example, Debt Coverage Ratio (DCR) is 1.30

Calculations:		
Stabilized Net Operating Inco	ome (NOIs)	\$ 42,336
Debt Coverage Ratio (DCR)		1.30
Debt Payment (DP)	\$42,336 ÷	1.30 = \$ 32,566

Calculations:		
Debt Payment (DP)	\$ 32,566	
Mortgage Constant (MC)	7.26%	
Loan Value	\$32,566 ÷ 0.0726 = \$448,268	

D. Example: Strip Shopping Center

Calculations:	
Loan Interest (i) @ known	6.00%
Loan Term @ known	30 years (annually)
Sinking Fund Factor (SFF)	
0.06 ÷ [(1	$+ 0.06)^{30} - 1] = 1.26\%$

6.00%	
1.26%	
0.06 + 0.0126 = 7.26%	
	6.00% 1.26% 0.06 + 0.0126 = 7.26%

Assumptions: Loan

• For this example, Debt Coverage Ratio (DCR) is 1.25

Calculations:		
Stabilized Net Operating Inco	ome (NOIs)	\$ 30,040
Debt Coverage Ratio (DCR)		1.25
Debt Payment (DP)	\$30,040 ÷ 1	1.25 = \$ 24,032

Calculations:		
Debt Payment (DP)	\$ 24,032	
Mortgage Constant (MC)	7.26%	
Loan Value	\$24,032 ÷ 0.1095 = \$ 330,796	

E. Example: Industrial Building

Calculations:	
Loan Interest (i) @ known	5.50%
Loan Term @ known	30 years (annually)
Sinking Fund Factor (SFF)	
0.055 ÷ [(1 -	$+ 0.055)^{30} - 1] = 1.38\%$

5.50%	
1.38%	
0.055 + 0.0138 = 6.88%	
	5.50% 1.38% 0.055 + 0.0138 = 6.88%

Assumptions: Loan

• For this example, Debt Coverage Ratio (DCR) is 1.10

Calculations:		
Stabilized Net Operating Inco	ome (NOIs)	\$ 96,875
Debt Coverage Ratio (DCR)		1.10
Debt Payment (DP)	\$96,875 ÷	1.10 = \$ 88,068

Calculations:		
Debt Payment (DP)	\$ 88,068	
Mortgage Constant (MC)	6.88%	
Loan Value	\$88,068 ÷ 0.0688 = \$ 1,279,961	

F. Example: Office Building

Calculations:	
Loan Interest (i) @ known	7.00%
Loan Term @ known	30 years (annually)
Sinking Fund Factor (SFF)	
$0.07 \div [(1$	$1 + 0.07)^{30} - 1] = 1.06\%$

Calculations:	
Loan Interest (i)	7.00%
Sinking Fund Factor (SFF)	1.06%
Mortgage Constant (MC)	0.07 + 0.0106 = 8.06%

Assumptions: Loan

• For this example, Debt Coverage Ratio (DCR) is 1.30

Calculations:	
Stabilized Net Operating Income (NO	ls) \$1,704,000
Debt Coverage Ratio (DCR)	1.30
Debt Payment (DP) \$1,704,000 +	÷ 1.30 = \$ 1,310,769

Calculations:		
Debt Payment (DP)		\$ 1,310,769
Mortgage Constant	(MC)	8.06%
Loan Value	\$1,310,769 ÷ 0.0806 = \$16,265,389	

Chapter V ESTIMATING THE LOAN VALUE (LV) USING DISCOUNTED CASH FLOW MODELS (DCFMs)

The basic discounted cash flow model is modified to estimate the value of the Loan as follows:

[Equation 20]

$$LV = \sum_{t=1}^{n} \frac{DP_t}{(1+i)^t} + \frac{UM_n}{(1+i)^n}$$

where,

LV = Loan Value

n = Loan Term, or number of periods of debt service

t = a specific time period

i = Interest Rate per period

 DP_t = Debt Payment per period

 UM_n = Unpaid Mortgage Balance in period n, after DP_n is paid

The annualized Debt Payment can also include other cash payments beside the required interest and amortization amount such as:

- Additional interest from cash flow participation periods
- Payments to renew or extend that loan during the holding period

The holding period, n, is the investor's best estimate and does not need to coincide with the loan amortization period or the term of the loan

At the end of the holding period, year n, the Unpaid Mortgage Balance (UM) paid off when the property is sold. This reversionary payment can also include:

- Prepayment penalties
- Accrued but unpaid interest
- Participation interest
- Yield maintenance provisions
The interest rate, i, which is used as the risk-adjusted rate of discount may or may not be the same as the interest rate that is used to calculate the Debt Payment. For example, if a mortgage assumed to have a below-market interest rate, the current market interest rate may be used if the analyst wants to determine the market value of the loan

If the analyst is determining the loan owner's (or mortgagee's) value, the correct interest rate would be the rate at which the mortgagee could invest the money in a mortgage with similar risk.

The risk premium for the interest rate must consider the three "C's" of credit:

- The Credit worthiness of the borrower
- The Capacity of the borrower to make the loan payments; and,
- The Character of the borrower

If the loan is not personally guaranteed by the borrower, a non-recourse loan, then the analyst must consider only the capacity of the real estate enterprise to make the required debt payments. The level of this default risk is usually reflected in the level of the Debt Coverage Ratio. The higher the default risk, the higher the Debt Coverage Ratio.

The risk premium must also reflect the risk of the lender not being able to recover all of its capital in the event that the borrower defaults on the loan and the lender must sell the property. This is the risk of capital loss—or the Liquidity Risk. The lower the loan-to-value ratio, the lower the liquidity risk.

Usually in DCFMs, the analyst constructs a mortgage amortization table that shows the periodic payment as well as the annual debt payments, which are broken down into interest payments and amortization amounts so that the outstanding loan balance is calculated at the beginning of the year as well as the end of the year.

A. Amortization Table

Assumptions: Loan Amortization

- Principal: \$1,000,000 Borrowed
- Interest Rate: 6.00% as an Annual Rate
- Term 10 Years @ 1 Period per Year

Period	ВоР	Payment	Interest	Amortization	ЕоР
0					1,000,000
1	1,000,000	135,868	60,000	75,868	924,132
2	924,132	135,868	55,448	80,420	843,712
3	843,712	135,868	50,623	85,245	758,467
4	758,467	135,868	45,508	90,360	668,107
5	668,107	135,868	40,086	95,782	572,325
6	572,325	135,868	34,340	101,528	470,797
7	470,797	135,868	28,248	107,620	363,177
8	363,177	135,868	21,791	114,077	249,099
9	249,099	135,868	14,946	120,922	128,177
10	128,177	135,868	7,691	128,177	0

Definitions of an Amortization Table

Period:	Payment Interval, which affects how often (and how much) interest accrues
BoP:	Loan balance at the Beginning of a Period
Payment:	Periodic payments. A payment in an amortizing loan includes payment towards both interest and principal, and is the same for each period. Payment can be calculated using Microsoft Excel (function "=PMT") or a financial calculator such as HP-12C when the total number of periods, interest per period, and principal owed are known.
Interest:	Interest portion of the payment. Interest can be found by multiplying the periodic interest rate by the balance at the beginning of a period.
Amortization:	Principal portion of the payment, which is the difference between the periodic payment and the interest paid for that period
EoP:	Remaining balance at the End of a Period, which should reach zero by the end of the term

B. Example: Apartment Building

Assumptions: Valuation Period

• Property sale at the end of fifth year

Loan Valu	e (Principal)	448,268			
Interest (A	Annual)	6.00%			
Term (Anr	nual)	30			
Debt Payn	nent (Periodi	32,566			
Period	BoP	Payment	Amortization	Interest	
0					448,
1	448,268	32,566	5,670	26,896	442,
2	442,598	32,566	6,010	26,556	436,
3	436,587	32,566	6,371	26,195	430,
4	430,216	32,566	6,753	25,813	423,
5	423,463	32,566	7,158	25,408	416,
6	416,305	32,566	7,588	24,978	408,
7	408,717	32,566	8,043	24,523	400,
8	400,674	32,566	8,526	24,040	392,
9	392,148	32,566	9,037	23,529	383,
10	383,111	32,566	9,580	22,987	373,
11	373,531	32,566	10,154	22,412	363,
12	363,377	32,566	10,764	21,803	352,
13	352,613	32,566	11,409	21,157	341,
14	341,204	32,566	12,094	20,472	329,
15	329,110	32,566	12,820	19,747	316,
16	316,291	32,566	13,589	18,977	302,
17	302,702	32,566	14,404	18,162	288,
18	288,298	32,566	15,268	17,298	273,
19	273,030	32,566	16,184	16,382	256,
20	256,845	32,566	17,155	15,411	239,
21	239,690	32,566	18,185	14,381	221,
22	221,505	32,566	19,276	13,290	202,
23	202,229	32,566	20,432	12,134	181,
24	181,797	32,566	21,658	10,908	160,
25	160,138	32,566	22,958	9,608	137,
26	137,180	32,566	24,335	8,231	112,
27	112,845	32,566	25,795	6,771	. 87,
28	87,050	32,566	27,343	5,223	59,
20	50 707	22 566	28.084	2 502	20

LOAN	N VALUE DISCOUNTEE	CASH FLOW						
			Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
)eht Service (DS)							
	Debt Payment		32,566	32,566	32,566	32,566	32,566	
	Unpaid Mortgage						416,305	
			20.500					
	Total Debt Service		32,566	32,566	32,566	32,566	448,871	
Ŀ	oan Value							
	Interest Rate	6.009	6 94.34%	89.00%	83.96%	79.21%	74.73%	
	Loan Value	\$ 448,268	30,723	28,984	27,343	25,795	335,422	

C. Example: Strip Shopping Center

Assumptions: Valuation Period

• Property sale at the end of fifth year

AN AMORT	IZATION TABLE	FOR LOAN	I VALUE CALCUL	ATIONS	
Loan Value	e (Principal)	330,796			
Interest (A	(innual)	6.00%			
Term (Ann	ual)	30			
Debt Paym	nent (Periodi	24,032			
	•				
Period	BoP	Payment	Amortization	Interest	Eo
0					330,796
1	330,796	24,032	4,184	19,848	326,612
2	326,612	24,032	4,435	19,597	322,177
3	322,177	24,032	4,701	19,331	317,476
4	317,476	24,032	4,983	19,049	312,492
5	312,492	24,032	5,282	18,750	307,210
6	307,210	24,032	5,599	18,433	301,610
7	301,610	24,032	5,935	18,097	295,675
8	295,675	24,032	6,292	17,740	289,383
9	289,383	24,032	6,669	17,363	282,714
10	282,714	24,032	7,069	16,963	275,645
11	275,645	24,032	7,493	16,539	268,152
12	268,152	24,032	7,943	16,089	260,209
13	260,209	24,032	8,419	15,613	251,790
14	251,790	24,032	8,925	15,107	242,865
15	242,865	24,032	9,460	14,572	233,405
16	233,405	24,032	10,028	14,004	223,377
17	223,377	24,032	10,629	13,403	212,748
18	212,748	24,032	11,267	12,765	201,481
19	201,481	24,032	11,943	12,089	189,537
20	189,537	24,032	12,660	11,372	176,878
21	176,878	24,032	13,419	10,613	163,458
22	163,458	24,032	14,225	9,807	149,234
23	149,234	24,032	15,078	8,954	134,156
24	134,156	24,032	15,983	8,049	118,173
25	118,173	24,032	16,942	7,090	101,232
26	101,232	24,032	17,958	6,074	83,273
27	83,273	24,032	19,036	4,996	64,238
28	64,238	24,032	20,178	3,854	44,060
29	44,060	24,032	21,388	2,644	22,672
30	22.672	24.032	22.672	1.360	. (0

LOA	N VALUE DISCOUNTED CA	SH FLOW						
			Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
	Debt Service (DS)							
	Debt Payment		24,032	24,032	24,032	24,032	24,032	
	Unpaid Mortgage						307,210	
	Total Debt Service		24,032	24,032	24,032	24,032	331,242	
L	oan Value							
	Interest Rate	6.00%	94.76%	95.15%	95.51%	95.85%	96.16%	
	Less Males	é 200 700	22.072		20.470	40.000	247 522	
	Loan Value	\$ 330,796	22,672	21,388	20,178	19,036	247,523	

D. Example: Industrial Building

Assumptions: Valuation Period

• Property sale at the end of fifth year

AN AMOR	TIZATION TABLE	FOR LOAN	I VALUE CALCUL	ATIONS	
Loan Valu	e (Principal)	1.279.961			
Interest (Annual)	5.50%			
Term (An	nual)	30			
Debt Payı	ment (Periodi	88,068			
Period	ВоР	Payment	Amortization	Interest	EoP
0		•			1,279,961
1	1,279,961	88,068	17,670	70,398	1,262,290
2	1,262,290	88,068	18,642	69,426	1,243,648
3	1,243,648	88,068	19,668	68,401	1,223,980
4	1,223,980	88,068	20,749	67,319	1,203,231
5	1,203,231	88,068	21,890	66,178	1,181,341
6	1,181,341	88,068	23,094	64,974	1,158,246
7	1,158,246	88,068	24,365	63,704	1,133,882
B	1,133,882	88,068	25,705	62,363	1,108,177
Э	1,108,177	88,068	27,118	60,950	1,081,058
10	1,081,058	88,068	28,610	59,458	1,052,448
11	1,052,448	88,068	30,184	57,885	1,022,265
12	1,022,265	88,068	31,844	56,225	990,421
13	990,421	88,068	33,595	54,473	956,826
14	956,826	88,068	35,443	52,625	921,384
15	921,384	88,068	37,392	50,676	883,992
16	883,992	88,068	39,449	48,620	844,543
17	844,543	88,068	41,618	46,450	802,925
18	802,925	88,068	43,907	44,161	759,017
19	759,017	88,068	46,322	41,746	712,695
20	712,695	88,068	48,870	39,198	663,825
21	663,825	88,068	51,558	36,510	612,267
22	612,267	88,068	54,393	33,675	557,874
23	557,874	88,068	57,385	30,683	500,489
24	500,489	88,068	60,541	27,527	439,947
25	439,947	88,068	63,871	24,197	376,076
26	376,076	88,068	67,384	20,684	308,692
27	308,692	88,068	71,090	16,978	237,602
28	237,602	88,068	75,000	13,068	162,602
29	162,602	88,068	79,125	8,943	83,477
30	83,477	88,068	83,477	4,591	(0)

LOAN	N VALUE DISCOUNTED CA	SH FLOW						
			Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
D	Debt Service (DS)							
	Debt Payment		88,068	88,068	88,068	88,068	88,068	
	Unpaid Mortgage						1,181,341	
	Total Debt Service		88,068	88,068	88,068	88,068	1,269,409	
Ŀ	oan Value							
	Interest Rate	5.50%	94.79%	89.85%	85.16%	80.72%	76.51%	
	Loan Value	\$ 1,279,961	83,477	79,125	75,000	71,090	971,268	

E. Example: Office Building

Assumptions: Valuation Period

• Property sale at the end of fifth year

			TALOL CALCO	LAHONS	
Loan Val	ue (Principal)	16,265,389			
Interest	(Annual)	7.00%			
Term (Ar	nual)	30			
Debt Pay	, ment (Periodi	1,310,769			
Period	BoP	Payment	Amortization	Interest	
0					16,265,
1	16,265,389	1,310,769	172,192	1,138,577	16,093,
2	16,093,197	1,310,769	184,245	1,126,524	15,908,
3	15,908,952	1,310,769	197,143	1,113,627	15,711,
4	15,711,809	1,310,769	210,943	1,099,827	15,500,
5	15,500,867	1,310,769	225,709	1,085,061	15,275,
6	15,275,158	1,310,769	241,508	1,069,261	15,033,
7	15,033,650	1,310,769	258,414	1,052,356	14,775,
8	14,775,236	1,310,769	276,503	1,034,267	14,498,
9	14,498,734	1,310,769	295,858	1,014,911	14,202,
10	14,202,876	1,310,769	316,568	994,201	13,886,
11	13,886,308	1,310,769	338,728	972,042	13,547,
12	13,547,580	1,310,769	362,439	948,331	13,185,
13	13,185,142	1,310,769	387,809	922,960	12,797,
14	12,797,332	1,310,769	414,956	895,813	12,382,
15	12,382,376	1,310,769	444,003	866,766	11,938,
16	11,938,373	1,310,769	475,083	835,686	11,463,
17	11,463,290	1,310,769	508,339	802,430	10,954,
18	10,954,951	1,310,769	543,923	766,847	10,411,
19	10,411,029	1,310,769	581,997	728,772	9,829,
20	9,829,032	1,310,769	622,737	688,032	9,206,
21	9,206,295	1,310,769	666,329	644,441	8,539,
22	8,539,966	1,310,769	712,972	597,798	7,826,
23	7,826,994	1,310,769	762,880	547,890	7,064,
24	7,064,115	1,310,769	816,281	494,488	6,247,
25	6,247,834	1,310,769	873,421	437,348	5,374,
26	5,374,413	1,310,769	934,560	376,209	4,439,
27	4,439,852	1,310,769	999,980	310,790	3,439,
28	3,439,873	1,310,769	1,069,978	240,791	2,369,
29	2,369,895	1,310,769	1,144,877	165,893	1,225.
30	1 225 018	1.310.769	1,225,018	85,751	

LOAI	N VALUE DISCOUNTEE	CASH FLOW							
				Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
L	Debt Service (DS)								
	Debt Payment			1,310,769	1,310,769	1,310,769	1,310,769	1,310,769	
	Unpaid Mortgage							15,275,158	
	Total Debt Service			1,310,769	1,310,769	1,310,769	1,310,769	16,585,927	
L	Oall value								
	Interest Rate		7.00%	93.46%	87.34%	81.63%	76.29%	71.30%	
	Loan Value		\$ 16,265,389	1,225,018	1,144,877	1,069,978	999,980	11,825,537	

Chapter VI ESTIMATING EQUITY VALUE (EV) USING DIRECT CAPITALIZATION MODELS (DCMs)

A. Introduction

- Equity Value (EV) is the present worth of the future monetary benefits that accrue to the owner of the real estate during the expected holding period
- It is often called a "Reversion or Residual Value" based on what cash flow is left after the rents are collected, the operating expenses are paid, the necessary capital expenditures are made, and the required financial obligations are met
- The Equity Value can be estimated using either a Direct Capitalization Model (DCM) or a Discounted Cash Flow Model (DCFM)
- In both cases, the after-financing cash flow is used and income taxes are not considered
- Investors should understand the tax consequences of the real estate investment, but "tax savings" should never drive or justify any real estate investment
- The most common forms of real estate ownership are nontaxable conduits that have the income "flow through" to the owners of the entity. That is, no income tax is made at the entity level. These would include
 - Partnerships
 - Real Estate Investment Trusts (REIT's)
 - Limited Liability Companies (LLC's)
 - Pension funds, or
 - Non-profit companies
- Language surrounding the Equity Value is confusing, because several terms are used to describe the appropriate capitalization rate and the risk-adjusted rate of discount
- The appropriate capitalization rate is then sometimes called the "leveraged cash-on-cash return" by investors or the Equity Dividend Rate (Re) by appraisers. In any event, this capitalization rate has a "return on" components and a "return of" component.
- The "return on" component is the Required Internal Rate of Return on Equity (RIRRe), which is also called the Required Equity Yield Rate (y)

- The "return of" component is usually negative because the Equity Value is assumed to increase over time as the mortgage is amortized and therefore "building up" the equity
- Also, the Equity Value is expected to increase over time, because as the property value increases and the mortgage amount remains either fixed or declining so that all of the residual benefits go to the equity
- Both the appropriate capitalization and the risk-adjusted rate of discount are difficult to discern from recent property sales, because the exact amount and terms of property's financing arrangements are not known
- Active real estate investors are often surveyed to determine their expected "leveraged cash-on-cash return" (a capitalization rate) or their "leveraged internal rate of return" (a risk-adjusted rate of discount)

B. Estimating Equity Value (EV) Using Direct Capitalization Models (DCMs)

 The Direct Capitalization Model to estimate the Equity Value (EV) is Cash Flow after financing (CF) divided by the Equity Dividend Rate (Re) or the Leveraged Cash-on-Cash Return (LCOC)

[Equation 21]

$$EV = CF/Re$$

where,

CF = Cash Flow after financing Re = Equity Dividend Rate

- As a capitalization rate, the Equity Dividend Rate (Re) is the Equity Yield Rate (y), less the expected growth rate of the equity. The equity value will increase annually through the appreciation in the property value (%Apr) as well as by the decrease in the mortgage loan principal, because the debt is amortized by the Sinking Fund Factor (SFF). See Figure 3.
- To capture the effect of the property appreciation and the debt amortization, we need to start with the definition of the Overall Capitalization Rate (OCR). OCR is the weighted average of the Mortgage Constant (MC) and the Equity Dividend Rate (Re).

[Equation 22]

[22a]
$$OCR = MC \times (L/V) + Re \times (1 - L/V)$$

re-arranging the terms, we have:

[22b]

$$Re = \frac{OCR - MC \times (L/V)}{(1 - L/V)}$$

Then, we substitute the below:

[Equation 8]	OCR = D - %Apr
[Equation 5]	$D = [i \times (L/V)] + [y \times (1 - L/V)]$
[Equation 14]	MC = i + SFF

and, re-arrange and cancel terms we have:

[Equation 23]

$$Re = y - \frac{\%Apr + (L/V) \times SFF}{1 - (L/V)}$$

where,

y = Equity Yield Rate
%Apr = annual property Appreciation rate
SFF = annual Sinking Fund Factor
L/V = Loan-to-Value Ratio (or Percent Debt)

[Figure 3] Equity Build-up Graph (for 25% Equity at Beginning)

Equity Build-up Graph (for 25% Equity at Beginning)

- Again, the Direct Capitalization Model uses simple mathematics, but it has many assumptions embedded in it
- There have been many attempts to modify direct capitalization models to account for different financing conditions (Ellwood Models) and to account for increasing or decreasing income streams (J-factors)
- However, as with most DCM's, these are best used for "back of the envelope (BOTE)" analysis and as a way to screen or quickly evaluate a real estate investment's potential
- The Equity Dividend Rate (Re) can be derived as above for an analyst estimating the Investment Value of a property
- The Equity dividend Rate (Re) can also be derived from recent market sales if the financing terms of the sales are known. Equity Dividend Rates determined in this manner are used in the estimation of the Market Value of the property.

C. Example: Apartment Building

Calculations:		
Stabilized Net Operating	Income (NOIs)	\$ 42,336
Cash Flow before Debt Se	ervice	\$ 42,336
Debt Payment (DP) @ kn	iown	\$ 32,566
CF after Debt Service	\$42,336 – \$32,5	666 = \$ 9,770

Calculations:		
Overall Capitalization Rate (OCR)	7.25%	
Mortgage Constant (MC)	7.26%	
Loan-to-Value Ratio	75%	
Equity Dividend Rate (Re) / Leveraged Cash-on-Cash Return		
$\frac{0.0725 - 0.0726 \times 0.75}{1 - 0.75} = 7.21\%$		

Calculations:		
Equity Yield Rate (y)	15.00%	
Property Annual Growth	Apprec. @ 1%	
Loan-to-Value Ratio	75%	
Sinking Fund Factor (SFF)	1.26%	
Equity Dividend Rate (Re) / Leveraged Cash-on-Cash Return		
$0.15 - \frac{(0.01 + 0.75 \times 0.0126)}{1 - 0.75} = 7.21\%$		

Calculations:		
Cash flow after Debt S	ervice	\$ 9,770
Equity dividend Rate	(Re)	7.21%
Equity Value (EV)	\$ 9,770 ÷ \$ 0.0	721 = \$ 135,592

D. Example: Strip Shopping Center

Calculations:		
Stabilized Net Operating	Income (NOIs)	\$ 30,040
Cash Flow before Debt Service		\$ 30,040
Debt Payment (DP) @ known		\$ 24,032
CF after Debt Service	\$30,040 - \$24,0)32 = \$ 6,008

Calculations:		
Overall Capitalization Rate (OCR)	6.75%	
Mortgage Constant (MC)	7.26%	
Loan-to-Value Ratio	75%	
Equity Dividend Rate (Re) / Leveraged Cash-on-Cash Return		
$\frac{0.0675 - 0.0726 \times 0.75}{1 - 0.75} = 5.21\%$		

Calculations:		
Equity Yield Rate (y)	15.00%	
Property Annual Growth	Apprec. @ 1.5%	
Loan-to-Value Ratio	75%	
Sinking Fund Factor (SFF)	1.26%	
Equity Dividend Rate (Re) / Leveraged Cash-on-Cash Return		
$0.15 - \frac{(0.015 + 0.75 \times 0.0126)}{1 - 0.75} = 5.21\%$		

Calculations:	
Cash flow after Debt Servic	e \$ 6,008
Equity Dividend Rate (Re)	5.21%
Equity Value (EV)	\$ 6,008 ÷ 0.0521 = \$ 115,420

E. Example: Industrial Building

Calculations:		
Stabilized Net Operating	Income (NOIs)	\$ 96,875
Cash Flow before Debt Se	ervice	\$ 96,875
Debt Payment (DP) @ known		\$ 88,068
CF after Debt Service	\$96,875 — \$88,0	68 = \$ 8,807

Calculations:		
Overall Capitalization Rate (OCR)	7.45%	
Mortgage Constant (MC)	6.88%	
Loan-to-Value Ratio	90%	
Equity Dividend Rate (Re) / Leveraged Cash-on-Cash Return		
$\frac{0.0745 - 0.0688 \times 0.9}{1 - 0.9} = 12.58\%$		

Calculations:		
Equity Yield Rate (y)	15.00%	
Property Annual Growth	Deprec. @ -1.00%	
Loan-to-Value Ratio	90%	
Sinking Fund Factor (SFF)	1.38%	
Equity Dividend Rate (Re) / Leveraged Cash-on-Cash Return		
$0.15 - \frac{-0.01 + 0.9 \times 0.0138}{1 - 0.75} = 12.58\%$		

Calculations:	
Cash flow after Debt Service	\$ 8,807
Equity dividend Rate (Re)	12.58%
Equity Value (EV)	\$8,807 ÷ 0.1258 = \$70,034

F. Example: Office Building

Calculations:		
Stabilized Net Operating Income (NOIs)	\$ 1,704,000	
Cash Flow before Debt Service	\$ 1,704,000	
Debt Payment (DP) @ known	\$ 1,310,769	
Cash Flow after Debt Service		
\$1,704,000 - \$1,310,769 = \$393,231		

Calculations:					
Overall Capitalization Rate (OCR)	8.30%				
Mortgage Constant (MC)	8.06%				
Loan-to-Value Ratio	70%				
Equity Dividend Rate (Re) / Leveraged Cash-on-Cash Return					
$\frac{0.083 - 0.0806 \times 0.7}{1 - 0.7} =$	= 8.86%				

Calculations:	
Equity Yield Rate (y)	15.00%
Property Annual Growth	Apprec. @ 2.00%
Loan-to-Value Ratio	70%
Sinking Fund Factor (SFF)	1.06%
Equity Dividend Rate (Re) / Leve	raged Cash-on-Cash Return
$0.18 - \frac{(0.02 + 0.7)}{1 - 0}$	$\frac{0.0106}{0.7} = 8.86\%$

\$ 393,231
8.86%
231 ÷ 0.0886 = \$ 4,436,682
,

Chapter VII ESTIMATING EQUITY VALUE (EV) USING DISCOUNTED CASH FLOW MODELS (DCFMs)

The basic Discounted Cash Flow Model can be redefined to estimate the Equity Value (EV) as follows:

[Equation 24]

$$EV = \sum_{t=1}^{n} \frac{CF_t}{(1+y)^t} + \frac{ER_n}{(1+y)^n}$$

where,

n = Holding Period $CF_t = Cash Flow at period t$

y = Equity Yield Rate

 $ER_n = Equity$ Reversion at the end of year n

The Cash Flow (CF) is defined as the annual Net Operating Income (NOI) less the annual Capital Expenditures (CE), then less the annual Debt Payment (DP):

[Equation 25]

$$CF = NOI - CE - DP$$

The Equity Reversion (ER) at the end of the holding period (n) is defined as the Sales Price (SP) less the Selling Expense—brokerage commission and closing costs (SE), then less the Unpaid Mortgage (UM):

[Equation 26]

 $ER_n = SP_n - SE_n - UM_n$

where, $SP_n = Sale \ Price \ in \ year \ n$ $SE_n = Selling \ Expenses \ in \ year \ n$ $UM_n = Unpaid \ Mortgage \ in \ year \ n$

A. Example: Apartment Building

QUITY VALUE DISCOUNTED CASH FI	low								
				Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
				42.226	42 750	42 407	42.640	44.055	44.400
Net Operating Income				42,330	42,759	43,187	43,619	44,055	44,496
Capital Expenditure				-	-	-	-	-	
Operating Future CF before Debt P	ayment			42,336	42,759	43,187	43,619	44,055	
Debt Payment				32,566	32,566	32,566	32,566	32,566	
Operating Future CF after Debt Pay	ment			9,770	10,193	10,621	11,053	11,489	
Property Reversion									
Sale Price		7.25%	OCR					613 732	
Sale Expense		5.00%	of SP					30,687	
Net Sale Price								583,045	
Unpaid Mortgage								416,305	
Net Sale after Principal Repay								166,741	
Total CE before Debt Service	_			12 336	12 750	/12 197	43 610	627 100	
Total Debt Service				32 566	32 566	32 566	32 566	448 871	
Total CF after Debt Service	Total CF after Debt Service			9,770	10,193	10,621	11,053	178,229	
Equity Value									
Equity Yield Rate		15.00%		86.96%	75.61%	65.75%	57.18%	49.72%	
PV of Operating CF after DS	Ś	35.218	29.82%	8.496	7.708	6.983	6.319	5.712	
PV of Reversion CF after DS	\$	82,900	70.18%	-	-	-	-	82,900	
Equity Value	\$	118,117		8,496	7,708	6,983	6,319	88,612	

B. Example: Strip Shopping Center

QUITY VALUE DISCOUNT	ED CASH FLOW								
				Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
Net Operating Income				36,640	37,190	37,747	38,314	38,888	39,472
Capital Expenditure									
Capet		5	yrs	-	-	-	-	24,000	
Roof		20	yrs	-	-	-	-	-	
HVAC		10	yrs	-	-	-	-	-	
Total Capital Expend	iture			-	-	-	-	24,000	
Operating CE before De	ht Payment			36 640	37.190	37 747	38 314	14 888	
Debt Payment				24 032	24 032	24 032	24.032	24.032	
Operating CF after Debt	Payment			12,608	13,158	13,715	14,282	(9,144)	
Property Peyersion									
Sale Price		6 75%	OCR					584 766	
Sale Exnense		5.00%	of SP					29 238	
Net Sale Price		5.0070	0.01					555.527	
Unpaid Mortgage							r	307.210	
Net Sale after Debt								248,318	
Total CE before Debt Se	nvice			36 640	37 190	37 7/17	38 31/	570 /16	
Total Debt Service				24 032	24 032	24 032	24 032	331,242	
Total CF after Debt Servi	ice			12,608	13,158	13,715	14,282	239,174	
E. D. Maler									
Equity value		45.000/		05.05%	75 640/	CE 750/	57.400/	40 720/	
Equity Yield Rate		15.00%		86.96%	/5.61%	65.75%	57.18%	49.72%	
PV of Operating CF a	fter DS \$	33,550	21.37%	10,963	9,949	9,018	8,166	(4,546)	
PV of Reversion CF a	fter DS \$	123,458	78.63%	-	-	-	-	123,458	
Equity Value	\$	157,008		10,963	9,949	9,018	8,166	118,912	

C. Example: Industrial Building

QUI	TY VALUE DISCOUNTE	D CASH FLOV	v								
						Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
N	et Operating Income					109,375	109,355	109,335	109,314	109,294	109,273
С	apital Expenditure										
	Roof			10	yrs	-	-	-	-	-	
	Total Capital Expense					-	-	-	-	-	
0	perating CF before Deb	t Payment	-			109,375	109,355	109,335	109,314	109,294	
D	ebt Payment					88,068	88,068	88,068	88,068	88,068	
0	perating CF after Debt F	Payment				21,307	21,287	21,267	21,246	21,226	
P	roperty Sale										
	Sale Price			7.45%	OCR					1,466,751	
	Sale Expense			10.00%	of SP					146,675	
	Net Sale Price									1,320,076	
	Unpaid Mortgage									1,181,341	
	Net Sale after Debt									138,736	
T	otal CF before Debt Serv	/ice				109,375	109,355	109,335	109,314	1,429,370	
T	otal Debt Service					88,068	88,068	88,068	88,068	1,269,409	
Т	otal CF after Debt Servio	æ				21,307	21,287	21,267	21,246	159,961	
E	nuity Value		-								
E	Equity Yield Rate			15.00%		86.96%	75.61%	65.75%	57.18%	49.72%	
_	PV of Operating CE af	ter DS	¢	71 307	50.83%	18 528	16.096	13 983	12 1/18	10 553	
	PV of Reversion CF af	ter DS	Ś	68.976	49.17%	-	-	-	-	68.976	
	Equity Value		Ś	140,283		18,528	16,096	13,983	12,148	79,529	

D. Example: Office Building

QUITY VALUE DISCOUNTED CASH FLO	w							
			Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
Net Operating Income			1.704.000	1.738.080	1.772.842	1.808.298	1.844.464	1.881.354
Conital Expanditure				,,	, , , , , ,	,,		, ,
			-	-	-	-	-	
Operating CF before Debt Payment			1,704,000	1,738,080	1,772,842	1,808,298	1,844,464	
Debt Payment			1,310,769	1,310,769	1,310,769	1,310,769	1,310,769	
Operating CF after Debt Payment			393,231	427,311	462,072	497,529	533,695	
Property Sale								
Sale Price	8.30%	OCR					22,666,912	
Sale Expense	5.00%	of SP					1,133,346	
Net Sale Price							21,533,566	
Unpaid Mortgage							15,275,158	
Net Sale after Debt							6,258,408	
Total CF before Debt Service			1,704,000	1,738,080	1,772,842	1,808,298	23,378,031	
Total Debt Service			1,310,769	1,310,769	1,310,769	1,310,769	16,585,927	
Total CF after Debt Service			393,231	427,311	462,072	497,529	6,792,103	
Equity Value								
Equity Yield Rate	18.00%		84.75%	71.82%	60.86%	51.58%	43.71%	
PV of Operating CF after DS	\$ 1,411,269	34.03%	333,246	306,888	281,232	256,620	233,283	
PV of Reversion CF after DS	\$ 2,735,608	65.97%	-	-	-	-	2,735,608	
Equity Value	\$ 4,146,877		333,246	306,888	281,232	256,620	2,968,891	

APPENDICES

APPENDIX A EQUATIONS AND ABBREVIATIONS

Equation		Variable Abbreviation	Variable Definition
1	V = I/R		
		V	Value
		Ι	Income
		R	Capitalization Rate
2	R = r - g		
		R	Capitalization Rate
		r	Risk-Adjusted Rate of Discount
		g	annual growth rate of the stream of income
3	$V = \left(\sum_{t=1}^{n} \frac{1}{t}\right)$	$\left(\frac{AI_t}{(1+r)^t}\right) + \frac{1}{(1+r)^t}$	$\frac{RI_n}{(r+r)^n}$
		V	Value
		Σ	Summation
		n	number of years in the holding period
		t	a specific year in the holding period
		r	Risk-Adjusted Rate of Discount
		AI	Annual Income
		RI	Reversionary Income
4	r = rf + rp		
		r	Risk-Adjusted Rate of Discount
		rf	Risk-free or safe rate
		fp	Risk premium
5	WACC = D =	= RIRRtc	
	KIKKTC = [1]	ι × (L/V)] + [$y \times (1 - L/V)$
		WACC	Weighted Average Cost of Capital
		D	Discount Rate
		RIRRtc	Required Internal Rate of Return on total capital
		i	Interest rate
		У	Equity Yield Rate

6	PV = NOIs	/OCR	
		PV	Property Value
		NOIs	Stabilized Net Operating Income
		OCR	Overall Capitalization Rate
7	NOIs = GI	-VC - OE	
		NOIs	Stabilized Net Operating Income
		GI	Gross Income
		VC	Vacancy and Collection Allowance
		OE	Operating Expenses including Reserves for Wasting Parts
8a	OCR = D –	- (%Apr)	
8b	OCR = D +	- (%Dpr)	
		OCR	Overall Capitalization Rate
		D	Discount Rate; WACC = RIRRtc
		%Apr	Growth rate; annual rate of property Appreciation
		%Dpr	Growth rate; annual rate of property Depreciation
9	GI = RI + I	PI + OI	
		GI	Gross Income
		RI	Rental Income
		PI	Parking Income
		OI	Other Income
10	EGI = GI -	- VC	
		EGI	Effective Gross Income
		GI	Gross Income
		VC	Vacancy and Collection Allowance
11	OER = OE	/EGI	
		OER	Operating Expense Ratio
		OE	Operating Expenses
		EGI	Effective Gross Income
12	$PV = \sum_{t=1}^{n} \frac{GI_t - VC_t - OE_t}{(1+D)^t}$	$\frac{-CE_t}{CE_t} + \frac{SP_n - SE_n}{(1+D)^n}$	
----	--	--	
	t=1 PV	Property Value	
	Σ	Summation	
	n	number of years in the holding period	
	t	a specific year in the holding period	
	GIt	Gross Income for period t	
	VCt	Vacancy and Collection Allowance for period t	
	OEt	Operating Expenses for period t	
	CEt	Capital Expenditure for period t	
	SP _n	Selling Price after holding period n	
	SE _n	Selling Expenses after holding period n	
	D	Discount Rate; WACC; RIRRtc	
13	$SP_n = NOI_{n+1}/OCR$		
	SP _n	Selling Price in year n	
	NOI_{n+1}	Net Operating Income in year n+1	
	OCR	Overall Capitalization Rate	
14	MC = i + SFF		
	MC	Mortgage Constant	
	i	Periodic interest rate	
	SFF	Sinking Fund Factor	
15	$SFF = \frac{i}{(1+i)^n - 1}$		
	SFF	Sinking Fund Factor	
	n	Total number of periods in the amortization term	
	i	Periodic interest rate	
16	DCR = NOI/DP		
	DCR	Debt Coverage Ratio	
	NOI	Net Operating Income	
	DP	Debt Payment	

17	L/V = LV/PV	
	L/V	Loan-to-Value Ratio
	LV	Loan Value
	PV	Property Value
18	LV = DP/MC	

LV	Loan Value
DP	Debt Payment
MC	Mortgage Constant

19	DP = NOI / DCR	
	DP	Debt Payment
	NOI	Net Operating Income
	DCR	Debt Coverage Ratio

20
$$LV = \sum_{t=1}^{n} \frac{DP_t}{(1+i)^t} + \frac{UM_n}{(1+i)^n}$$

$$LV \qquad \text{Loan Value}$$

$$\sum \qquad \text{Summation}$$

$$n \qquad \text{Loan Term, or number of periods of debt service}$$

$$t \qquad a \text{ specific time period}$$

$$i \qquad \text{Interest Rate per period}$$

$$DP_t \qquad \text{Debt Payment per period}$$

$$UM_n \qquad \text{Unpaid Mortgage Balance after the loan term n}$$

21
$$EV = CF/Re$$

EV Equity Value
CF Cash Flow after financing
Re Equity Dividend Rate

22a
$$OCR = MC \times (L/V) + Re \times (1 - L/V)$$

22b
$$Re = \frac{OCR - MC \times (L/V)}{(1 - L/V)}$$

OCR Overall Capitalization Rate
MC Mortgage Constant
Re Equity Dividend Rate
L/V Loan-to-Value Ratio

$$Re = y - \frac{\% Apr + (L/V) \times SFF}{1 - (L/V)}$$
Re Equity Dividend Rate
$$y$$
Equity Yield Rate
$$\% Apr$$
annual rate of property Appreciation
$$SFF$$
annual Sinking Fund Factor
$$L/V$$
Loan-to-Value Ratio

24	$EV = \sum_{t=1}^{n} \frac{CF_t}{(1+y)^t} + \frac{CF_t}{(1+y)$	$\frac{ER_n}{1+y)^n}$
	EV	Equity Value
	Σ	Summation
	n	Holding Period
	t	a specific time period
	CF _t	Cash Flow at period t
	У	Equity Yield Rate
	ER _n	Equity Reversion at the end of holding period n

$$25 \quad CF = NOI - CE - DP$$

CF	Cash Flow
NOI	Net Operating Income
CE	Capital Expenditures
DP	annual Debt Payment

26
$$ER_n = SP_n - SE_n - UM_n$$

 ER_n Equity Reversion at the end of holding period n
 SP_n Sale Price in year n
 SE_n Selling Expenses in year n
 UM_n Unpaid Mortgage in year n

APPENDIX B THE FINLEY FORM

BACKGROUND

Wes Finley

In the mid 1970's my business partner in Oklahoma City was R. W. "Wes" Finley, a former saloon keeper turned real estate appraiser, broker, and developer. Wes did everything in a big way. His Branding Iron Saloon was the largest bar in Oklahoma; his Crossroads Mall was the largest shopping center in Oklahoma; and finally, Wes's United Founders Deal was the largest real estate transaction in Oklahoma. We were great friends and, as partners, we loved to look at properties and figure out real estate deals.

Wes's Minor Eccentricity

One of Wes's minor eccentricities was his "to-do" lists which he kept on old envelopes carried in the vest pocket of his sport coat. Each morning Wes would open his mail and save all the envelopes for his day's notes and "to-dos."

Probabilistic, Discounted Cash Flow Analysis Versus the Sniff Test

My preferred form of investment analysis was a probabilistic, discounted cash flow technique which used Monte Carlo simulation, over 50 variables, and various IRR and present value calculations which included the probability of the return. This analysis was done using a remote terminal, a modem, the University of Oklahoma's main frame computer, and 15 pages of output.

When we "worked out" a deal, I would gather all of the relevant data, make preliminary calculations, and call up the main frame. Meanwhile as I was collecting the data, Wes would be writing furiously on the back of one of his envelopes. He would then announce whether the deal would work even before I could call up the computer and do the "real analysis."

Wes contended that the most important thing for a good real estate developer and investor was a good nose. "The deal's just got to smell right!" he insisted.

Wes and I were different in many other ways as well: he was 150 pounds heavier, a foot taller, and twenty-five years older. Wes was all Irish and street-smart while I was only part Irish and book-learned, as Wes would say. It was little wonder that we had totally different approaches to everything, but the real estate analysis is where we sparred most of the time.

It was my computer-based, discounted cash flow analysis (the explicit scientific approach) versus Wes's intuitive, back-of-the-envelope, "smells good" approach.

Insights on the Sabbath

One Sunday morning while Wes was at Mass, I was in the office working on the computer (to get good turnaround time on the main frame). During a coffee break, I absent-mindedly walked in to Wes's vacant office and noticed a stack of "used" envelopes on his desk. In the name of scientific inquiry, I picked up the stack of envelopes, and studied his calculations. Much to my surprise, Wes was doing a rather complex mortgage-equity analysis that was based on real estate market conditions, mortgage rates and constraints, and risk-return trade off's.

The Finley Form Goes High Tech

I put Wes's calculation on the original computer spreadsheet program, Visicalc, which worked on my 16K Apple II. When I showed Wes his back-of-the-envelope approach computer screen the next morning, he was a little chagrined that I had pirated his intellectual property onto a 5 ½ inch floppy disk. But when he saw the "The Finley Form", he embraced this new computer technology.

We included the Finley Form in our appraisals, feasibility studies, and investment proposals from then on. Not surprisingly, our clients and investors related much more to the Finley Form than my I5-page, probabilistic, discounted cash flow analysis.

WHAT IS THE FINLEY FORM?

Direct Capitalization Technique

The Finley Form is essentially a direct capitalization technique that uses the mortgage-equity approach. Specifically, it is an equity residual methodology since the real estate markets (rents, vacancies, and operating expenses) and the mortgage markets (interest rates, amortization terms, and underwriting ratios) determine the amount of annual income that is left-over for (or residual to) the equity capital.

Capital Assumptions

As a valuation technique, the Finley Form assumes that the real estate investment will be acquired with both debt capital (a mortgage loan) and equity capital (the investor's cash contribution). The total property value is therefore defined on the sum of the value of the debt capital and the value of the equity capital.

Debt Value

The value of the debt capital is determined using the property's net operating income, and the lender's debt coverage ratio, interest rate, and amortization period. Essentially, the debt service is determined using the net operating income and debt coverage ratio, and then it is capitalized (or converted to value) using the mortgage constant.

Equity Value

The equity value is determined by calculating the property's cash flow (after financing but before tax) and then capitalizing it using what appraisers call the equity divided into rate and what equity investors call the "cash-on-cash" return.

As a mortgage-equity appraisal, the Finley Form implicitly includes all of the financial and investment assumptions that are made in the famous Ellwood Technique and the discounted cash flow technique.

ADVANTAGES OF THE FINELY FORM

The three main advantages of the Finley Form are that it (1) employs simple calculations (2) uses readily available data, and (3) is easily communicated.

Simple Calculations

Even though rather complicated financial and investment assumptions are implicitly being made, the Finley Form requires only basic addition, subtraction, multiplication, and division.

The calculations can be made using a computer, a calculator, or a pencil and the back-of-anenvelope. Investors who are familiar with the Finley Form, often do the calculations in their heads during negotiations or while driving the car with a spouse and children.

Readily Available Data

The financial information used in the Finley Form is readily available from banks, insurance companies, pension funds, or sellers offering carryback financing. Equity investors in real estate are usually forthcoming when asked what expected cash-on-cash return is. The equity dividend rate is a term of art used exclusively by real estate appraisers which is the same as the cash-on-cash return. Also the dividend yield quoted for common stocks in the financial pages is a very similar rate.

In discounted cash flow analysis, the equity yield rate is used which is also the expected internal rate of return on equity. This rate is very appealing as a risk-adjusted rate of discount for equity returns, but it is very difficult to observe. Also equity investors who do quote internal rates also need to express a small volume of assumptions for the meaningful interpretation of their rate. Thus, the cash-on-cash return is usually the best expressed indication of equity investors' expectations.

Easily Communicated

The straight forward manner of the Finley Form appeals to equity investors, and the ease of calculation in the Finley Form saves time and quickly eliminates investment "opportunities" that just won't hunt (as in "this dog won't hunt", as Wes would say).

Probably the best case for the Finley Form is that it easily communicates the essence of the real estate investment. In this way, the Finley Form is an excellent test for reasonableness: "does this deal make sense?" No matter how complicated the analysis or how elaborate the financial structure, if it doesn't work on the Finley Form, it probably won't work.

A LINE-BY LINE-EXPLANATION OF THE FINLEY FORM

An example of the Finley Form appears in Exhibit 1. The following is a line-by-line explanation of the critical assumptions and calculation used in the form.

Line A. Proposed Purchase Price. This is the total purchase price which is expected to be paid for the property. It can be the price, an estimated market value, or a possible bid price. For example, \$480,000.

Line B. Total Square Feet. This is the total net rentable square footage of the property. For example, 5,000 sq. ft.

Line C. Rent psf Per Year. This is the estimated rental rate of the property expressed as dollars per square foot per year. For example, \$12 per year.

Line D. Vacancy Rate. This is the estimated annual allowance for vacancies and collections. For example, 10%.

Line E. Operating Expense Ratio. The operating expense ratio is the total amount of actual cash operating expense which anticipated during a normal year and reserves for wasting parts expressed as a percent of the effective gross income. For example, 30%.

Line F. Interest Rate. The annual interest rate is the rate which is expected to be charged for a new mortgage or by the seller if carry back financing is expected. For example, 9%.

Line G. Amortization Period in Years. The amortization period is the number of years over which the loan may be amortized. The loan may have a ten-year call, but it may be amortized over 30 years. In this case, it is important to use the amortization period. For example, 20 years.

Line H. Debt Coverage Ratio. The debt coverage ratio, usually determined by the lender, is the ratio which calculated by dividing the Net Operating Income by the Annual Debt Service. A debt coverage ratio of 1.25, for example, would indicate that the net operating income would be 25% higher than the expected mortgage payment. For example, 1.25.

Line I. Required Cash Return (%). The required cash return is also known as the equity dividend rate. It is the cash flow divided by the equity investment. For example, 8%.

Line J. Gross Income. The gross income is calculated by taking the total square feet (line B) times the rent per square foot (line C). For example, $5000 \times 12 = $60,000$.

Line K. Vacancy. The vacancy allowance is calculated by taking the expected vacancy rate (Line D) times the gross income (Line J). For example, 10% X 60,000= \$6,000.

Line L. Effective Gross. The effective gross income is the amount of money expected to be actually collected during a year of operation. It is calculated subtracting the vacancy allowance (line K) from the gross income (line J). For example, 60,000 - 6,000 = \$54,000.

Line M. Operating Expenses. The operating expenses are calculated by multiplying the operating expense ratio (line E) by the effective gross (line L). For example, 30% X 54,000 = \$16,200.

Line N. Net Operating Income. The net operating income is calculated by subtracting the operating expenses (line M) from the effective gross income (line L). For example, 54,000 - 16,200= \$37,800.

Line O. Debt Coverage Ratio. The debt coverage ratio is the same as line H. For example, 1.25.

Line P. Mortgage Payment. The mortgage payment is calculated by dividing the net operating income (line N) by the debt coverage ratio (line O). For example, 37,800 + 1.25 = \$30,240.

Line Q. Mortgage Constant. The mortgage constant is the amount per year that is necessary to amortize one dollar at the specified interest rate (line F) over the amortization period in years (line K). The mortgage constant can be determined from financial tables, financial calculators, or calculated in the computer spreadsheet program. For example, Mortgage Constant= 108 for 9%, 20 years, monthly payment.

Line R. Mortgage Value. The mortgage value is determined by dividing the mortgage payment (line P) by the mortgage constant (line Q).

For example, 30,240 .108 = \$280,000.

Line S.Net Operating Income. The net operating income is the same as line N.

For example, \$37,800.

Line T. Mortgage Payment. The mortgage payment is the same as line P.

For example, \$30,240.

Line U. Cash Flow (before taxes). The cash flow before taxes is calculated by subtracting the mortgage payment (line T) from the net operating income (line S).

For example, 37,800 - 30,240= \$7,560.

Line V. Required Cash Return. The required cash return is the same as line 1.

For example, 8%.

Line W. Equity Value. The equity value is calculated by dividing the cash flow (line U) by the required cash return (line V). For example, 7,560/8% = \$94,500.

Line X. Mortgage Value. The mortgage value is the same as line R. For example, \$280,000.

Line Y. Property Value. The property value is calculated by adding the equity value (line W) to the mortgage value (line X). For example, 94,500 + 280,000 = \$374,500.

Line Z. Purchase Price. The purchase price is the same as line A. For example, \$400,000.

Line AA. Mortgage Value. The mortgage value is the same as line X and line R. For example, \$280,000.

Line BB. Required Equity. The required equity is calculated by subtracting the mortgage value (line AA) from the purchase price (line Z).

For example, 400,000 - 280,000 = \$120,000.

Line CC. Cash Flow. The cash flow is the same as line U. For example, \$7,560.

Line DD. Required Equity. The required equity is the same as line BB.

For example, \$120,000.

Line EE. Cash-on-Cash Return. The cash-on-cash return is calculated by dividing the cash flow (line CC) by the required equity (line DD).

For example, 7,560 + 120,000 = 6.3%.

Line FF. Loan to Value Ratio. The loan to value ratio is calculated by dividing the Mortgage Value (line R) by the property value (line Y).

For example, 280,000 + 374,500 = 74.7%.

APPLICATIONS OF THE FINLEY FORM

The Finley Form can be used for market value estimation, investment analysis, new project feasibility, land value estimation, and sensitivity analysis by the real estate appraiser or investment analyst.

Market Value

The estimation of market value requires normative assumptions that reflect the typical behavior of market participants. Market supported rents, vacancies, and operating expenses are required. The financial terms should be those available to most equity investors, and the expected equity divided rate should reflect the consensus of the market.

Investment Value

The investment value can be estimated using the Finley Form with specific lease terms or contemplated lease terms. Also if the investor perceives itself to have superior management and marketing skills, then lower operating expenses or lower vacancy rates may be used. In investment analysis, buyer-specific or seller-specific financing terms are appropriate. Also, the individual investor's unique cash-on-cash requirements are used.

Project Feasibility

The Finley Form is very useful for evaluating proposed projects. The rents, expenses, financing terms, and cash-on-cash returns for the hypothetical project are used to determine the property value Then the property value is compared to the total project costs to determine the feasibility of the project.

Land Value

The land value can be estimated using the Finley Form by following the procedure for a hypothetical project to determine the property value and then deducting the cost of the

improvements to estimate the land value. This is a "land residual" technique using an "equity" residual approach.

Sensitivity Analysis

Sensitivity analysis is the process of asking:

"What if we're wrong?"

"What if the future turns out to be different than our expectation?"

"What if the market is not our friend?"

The Finely Form can address all of these questions by changing the assumptions and evaluating the results. The ease of the calculation with the Finely Form makes the critical sensitivity analysis very quick and timely.

GOOD LUCK

The investment insights that I have learned from the Finely Form and from its originator, R.W. "Wes" Finely, have been an important part of my real estate life for the past 20 years. I recommend the Finely Form to you and wish you good luck. I know Wes does too!

		THE FINLEY FORM			
		(Back-of-the-Envelope Method	4)		
		A Mortgage-Equity Residual Mode	el		
	-	CRITICAL ASSUMPTIONS			
٨		Due year of Cales Duise	ć	400,000	
 A		Proposed Sales Price	\$	400,000	input
 В		Total Square Feet		5,000 ST	input
		Kent Per SF Per Year		\$12.00 ST/year	input
р Г		Operating Expanse Patie (%)		20.00%	input
с с		Operating Expense Ratio (%)		0.00%	input
 Г		Amortization Dariad in Vaars		9.00%	input
U U		Debt Coverage Patio		1 25	input
		Debt Coverage Ratio		2.25	input
 l		Required Casil Return (%)		0.00%	Input
		CALCOLATIONS			
J		Gross Income	\$	60,000	
 К	less	Vacancy	\$	6,000	
 L		Effective Gross Income	\$	54,000	
М	less	Operating Expenses	\$	16,200	
Ν		Net Operating Income	\$	37,800	
0	divided by	Debt Coverage Ratio		1.25	
Р		Mortgage Payment	\$	30,240	
Q	divided by	Mortgage Constant		10.80%	
R		Mortgage Value	\$	280,085	
 S		Net Operating Income	\$	37,800	
Т	less	Mortgage Payment	\$	30,240	
U		Cash Flow (Before Taxes)	\$	7,560	
V	divided by	Required Cash Return		8.00%	
 W		Equity Value	\$	94,500	
Х	plus	Mortgage Value	\$	280,085	
 Y		Property Value	\$	374,585	
 Z		Purchase Price	\$	400,000	
AA	less	Mortgage Value	\$	280,085	
 BB		Required Equity	\$	119,915	
CC		Cash Flow	\$	7,560	
DD	divided by	Required Equity	Ş	119,915	
EE		Cash-On-Cash Return		6.30%	
FF		Loan to Value Ratio		74.77%	

THE FINELY FORM

(the back-of-the-envelope method)

	Gross Income
less	Vacancy
	Effective Gross Income
less	Operating Expenses
	Net Operating Income
divided by	Debt Coverage Ratio
	Mortgage Payment
divided by	Mortgage Constant
	Mortgage Value
	Net Operating Income
less	Mortgage Payment
	Cash Flow (Before Taxes)
divided by	Required Cash Return
	Equity Value
plus	Mortgage Value
	Property Value
	Purchase Price
less	Mortgage Value
	Required Equity
	Cash Flow
divided by	Required Equity
	Cash-On-Cash Return

APPENDIX C THE BUILDING DEVELOPER'S "BACK-OF-THE-ENVELOPE" (BOTE) ANALYSIS FOR PROJECT FEASIBILITY

The best way for a Building Developer to evaluate the feasibility of new project is to analyze a couple hundred possible projects, and best way to analyze a couple hundred project is to use a direct capitalization model that compares the developer's Return on Cost (NOI/ Total Development Costs) to the current Overall Capitalization Rates (NOI/ Sales Price) in the real estate marketplace.

The Building Developer must compare the "spread" or difference between the Return on Costs and the Overall Capitalization Rate to see if the risk of taking on such a project is justified. That is, is the new project sufficiently profitable to compensate the developer for taking the risk to build it?

The old joke is that an aging Irish-American immigrant, who was a very successful and wealthy real estate developer, was asked the secret to his success over the last 40 years. He modestly said that he only ever wanted to make a 2% profit. "I would build it for 10% and sell it for an 8%!"

Let's check the math: If he built a project for \$1,000,000 that generated an NOI of 100,000 (or a 10% Return on Total Costs) and he sold the property for an 8% Overall Capitalization Rate (or \$1,250,000), was making a \$250,000 profit or 25%!

While we may not be a successful as the old Irish developer, we should always to try to achieve some spread between the Return on Total Costs and the Overall Capitalization Rate. How much the spread should be depends on the risks and uncertainty surrounding the project

The math in the methodology shown below is very simple, but the accuracy of the inputs is all important. For the Building Developer to be successful, he/she must know three things:

- 1. **Know Thy Self**. What are your strengths, weaknesses, keen skills, poor skills, risk tolerances, tastes and preferences, phobias and fatal attractions?
- 2. **Know Thy Market**. What are properties selling for, what is property renting for, who needs space, who's leaving town, who's your competitors, what's in the pipeline?
- 3. **Know Thy Costs.** What does it cost to construct a building, what does it cost to operate a building, how long does it take to make things happen, what are the interest rates, who's available to do the work?

A Little Nuance in the BOTE Feasibility Analysis

Construction costs are quoted in gross building square feet while rental rates are quoted in net rentable square feet. Therefor the construction costs need to be converted to costs per rentable square feel so that the analysis makes sense. Unfortunately, one of the most difficult and contentious challenge in real estate is measuring a building. The gross building area, the usable area, and the net rentable area can be very elusive concepts.

BOTE Examples

http://dankohlhepp.com/uploads/3/0/6/8/3068213/_airpark_bote.xls

Back of th	e Env	velope	Analys	sis						
AirPark W	est 1	76,40	0 sf Wa	arehous	se	Date	11-Oct-06	Time:	4:16 PM	
INCOME CALCULAT	IONS		per RSF	Annual	comments					
Gross Building Area				176,400						
Rentable Area Ratio	per FAR			95.00%		NET CA	P RATE CALCUL	ATIONS		
Rentable Area				176400		Net Ope	erating Income			\$4.04
Rental Income per Re	entable Squ	are Foot	\$4.25	749700		divided by: Total Development Costs				\$45.13
Parking Income	0	0	\$0.00	0		Return On Total Costs			8.95%	
Gross Income			\$4.25	749700		less: R	equired Spread			1.50%
times: Occupancy R	ate		95.00%			Require	d Disposition Cap	Rate		7.70%
Effective Gross Incom	ne			712215		less: M	arket Cap Rate			6.75%
less: Operating Expe	enses		\$0.00	0		Net Cap	Rate			0.95%
Net Operating Income)		\$4.04	712215		Indicate	d Decision			yes
DEVELOPMENT CO	ST CALCU	LATIONS	per RSF	Total		JUSTIF	IED LAND PRICE	CALCULATIO	NS	
Expected Land Cost		\$6.25				Market	Cap Rate			6.75%
Infrastructure		\$1.30				plus: R	equired Spread			1.50%
Total Land	Cost		\$7.55	1331820		Require	d Return on Costs			8.25%
Other Development C	osts (ODC)				times:	ODC			\$37.58
Earthwork		\$4.17				Income	To ODC			\$3.10
Storm Sewer		\$0.00								
special Fees		\$0.00				Net Ope	erating Income			\$4.04
Real Esate Taxes		\$0.15				less: In	come to ODC			\$3.10
Building Construction		\$23.25				Income	To Land			\$0.94
Parking Deck		\$0.00				divided	by: Required Retu	rn on Costs		8.25%
Contingency - Hard		\$0.70				Justified	Land Price			\$11.36
Project Administration	n	\$0.00								
Architect/Engineering		\$0.75				BREAK	-EVEN GROSS RE	NT CALCULA	TIONS	
Insurance		\$0.10				Total De	evelopment Costs			\$45.13
Testing/Inspection/Pe	ermits	\$0.25				times: F	Required Return on	Costs		8.25%
Landscape/Irrigation		\$0.80				Require	d NOI			\$3.72
Signage/Monumentat	ion	\$0.25				plus: O	perating Expenses			\$0.00
Special Features Sha	are Cost	\$0.00				Require	d Effective Gross			\$3.72
Tenant Improvements		\$4.00				divided by: Pro Forma Occupancy Rate			95.00%	
Leasing Commissions	S	\$1.13				Break-E	ven Gross Rent			\$3.92
Closing/Title Fees		\$0.09								
Legal		\$0.25								
Financing		\$0.17								
Interim interest		\$0.41								
Advertising/Promotion	۱	\$0.02								
Leasing/Salary Exper	nses	\$0.10								
Tenant Inducements		\$0.00								
Contingency - Soft		\$0.25								
Corporate Overhead	2.00%	\$0.74								
Total ODC			\$37.58	6628548						
Total Development Co	osts		\$45.13	7960368						

http://dankohlhepp.com/uploads/3/0/6/8/3068213/bote_internatioal_plaza_four.xls

Back of th	e En	velope	e Anal	ysis					
Internation	nal Pl	aza F	our						
INCOME CALCULAT	IONS		per RSF	Annual					
Gross Building Area				260,000					
Rentable Area Ratio	per FAR			95.00%	NET CAP	RATE CA	CULATIO	NS	
Rentable Area				247,000	Net Operating Income				\$18.45
Rental Income per Re	ntable Squ	are Foot	\$31.00	7,657,000	divided by: Total Development Costs				\$226.77
Parking Income			\$0.00	-	Return O	n Total Cos	ts		8.14%
Gross Income			\$31.00	7,657,000	less: Required Spread				1.25%
times: Occupancy R	ate		95.00%		Required	Disposition	Cap Rate		6.89%
Effective Gross Incom	ie			7,274,150	less: Mar	, ket Cap Ra	te		6.75%
less: Operating Expe	enses		\$11.00	2.717.000	Net Cap	Rate			0.14%
Net Operating Income)		\$18.45	4,557,150	Indicated	Decision			yes
DEVELOPMENT COS	ST CALCU	LATIONS	per RSF	Total	JUSTIFIE	D LAND P	RICE CALC	ULATIONS	
Expected Land Cost		\$22.00			Market C	ap Rate			6.75%
Infrastructure		\$0.00			plus: Re	quired Spre	ad		1.25%
Total Land	Cost		\$22.00	5,434,000	Required	Return on 0	Costs		8.00%
Other Development Costs (ODC)			times: ODC			\$204.77	
Earthwork		\$0.04			Income To ODC			\$16.38	
Storm Sewer		\$0.00							
Special Fees		\$4.29			Net Oper	ating Incom	е		\$18.45
Real Esate Taxes		\$0.20			less: Inc	ome to OD	0		\$16.38
Building Construction		\$100.33			Income T	o Land			\$2.07
Other Construction		\$1.62			divided by	: Required	Return on	Costs	8.00%
Parking Deck		\$42.14			Justified I	and Price			\$25.85
Contingency - Hard		\$2.69							
Project Administration	า	\$0.24			BREAK-E	VEN GROS	SS RENT C	ALCULATIONS	
Architect/Engineering		\$2.09			Total Dev	elopment C	osts		\$226.77
Insurance		\$2.75			times: Re	quired Retu	urn on Cost	5	8.00%
Testing/Inspection/Pe	rmits	\$0.58			Required	NOI			\$18.14
Landscape/Irrigation		\$1.61			plus: Ope	erating Expe	enses		\$11.00
Signage/Monumentat	ion	\$0.17			Required	Effective G	ross		\$29.14
Special Features Sha	re Cost	\$0.20			divided by	:Pro Forma	a Occupanc	y Rate	95.00%
Tenant Improvements		\$22.00			Break-Ev	en Gross R	ent		\$30.68
Leasing Commissions	5	\$7.81							
Closing/Title Fees		\$0.12							
Legal		\$0.32							
Financing		\$0.99							
Interim interest		\$3.63							
Advertising/Promotion	ı	\$0.22							
Leasing/Salary Exper	nses	\$0.61							
Tenant Inducements		\$3.00							
Contingency - Soft		\$0.20		Excludes land cost					
Corporate Overhead	3.50%	\$6.92	\$204.77	50,579,363					
Total ODC			\$226.77	56,013,363					
Total Development Costs									

Back of th	ne Env	/elope	Anal	ysis					
Phipps Pla	za					Date:		Time:	
INCOME CALCULAT	TIONS		per RSF	Annual	comments				
Gross Building Area			portion	500.000	Contributio				
Rentable Area Ratio	ner FAR			95 33%		NET CAP	PRATE CALCUL	ATIONS	
Rentable Area				476 650		Net Oper	ating Income		\$21.62
Rental Income per R	ontable Sau	are Foot	\$31.50	15 014 475		divided by: Total Development Costs			\$276.84
Parking Income (non	1018	90	\$2.31	1 099 440		Return O	n Total Costs		7 81%
Reserved Parking	113	125	\$0.36	169 500		rtotain o			1.0170
Gross Income	113	125	\$33.81	16 113 915		loss: Ro	1 50%		
times: Occupancy F	Pate		95.01%	10,110,010		Required	Disposition Can	Rate	6 31%
Effective Gross Incon	no		33.0070	15 308 219		loss: Ma	rket Can Rate	Nate	6.50%
less: Operating Exp	onsos		\$10.50	5 004 825		Net Can	Rate		-0 19%
Net Operating Incom	0		\$21.62	10 303 304		Indicated	Decision		-0.13%
Net Operating incom			Ψ21.02	10,303,334		Indicated	Decision		110
DEVELOPMENT CO	ST CALCU		ner RSF	Total		JUSTIFI		CALCULATIONS	
Expected Land Cost		\$24.00	portion	At Market		Market C	an Rate		6 50%
Infrastructure		\$0.00		/ te ivital i kot		nlus: Re	quired Spread		1 50%
Total Lanc	Cost	φ0.00	\$24.00	11439600		Required	Return on Costs		8.00%
Other Development (Costs (ODC)	1	φ24.00	11400000		times: C			\$252.84
site work		\$9.24				Income T			\$20.23
Storm Sowor		ψ5.24				income i	0 000		ψ20.25
special Ecos		\$1.00				Not Oper	ating Incomo		\$21.62
Real Esate Taxes		\$1.50							\$20.23
Building Construction	2	\$110.85		reduce curtain (fine	crach bare)	Income T	To Land		¢20.20 \$1.30
Building Lighting		\$110.00 ¢1.00		reduce curtain (mis	crash bars)	income i	U Lanu		φ1.55
		\$1.00							
Splie Dorking dock coroon	ina	\$0.00							
Faiking deck screen	ing	\$0.43 \$0.12							
10 Elevator Labbula		\$0.12 ¢0.02							
16 Elevator Lobby S		\$0.92							
8 2-comdors		Ф 0.50							
Parking Deck		\$39.50		reduced parking by	119	divided b	y: Required Retu	rn on Costs	8.00%
Parking Deck Securi	ty	\$0.87							
Parking Deck Equipr	nent	\$0.21							
Contingency - Hard		\$3.20				Justified	Land Price		\$17.37
Project Administratio	n	\$0.30							
Architect/Engineering	g	\$7.10				BREAK-EVEN GROSS RENT CALCULATION		ENT CALCULATIONS	
Insurance		\$0.10				Total Dev	elopment Costs		\$276.84
Testing/Inspection/Pe	ermits	\$0.35				times: Re	equired Return on	Costs	8.00%
Landscape/Irrigation		\$0.00				Required	NOI		\$22.15
Signage/Monumentar	tion	\$0.50				plus: Ope	erating Expenses		\$10.50
General Conditions		\$0.00				Required	Effective Gross		\$32.65
Tenant Improvements	3	\$35.00				divided b	y:Pro Forma Occ	upancy Rate	95.00%
Leasing Commission	IS	\$15.00				Break-Ev	en Gross Rent		\$34.37
Closing/Title Fees		\$0.19							
Legal		\$0.50							
Financing		\$0.88							
Interim interest		\$16.00							
Advertising/Promotio	n	\$1.00							
Leasing/Salary Expe	nses	\$0.30							
Tenant Inducements	(Restauran	\$1.00							
Contingency - Soft		\$0.30							
Corporate Overhead	2.00%	\$4.96		Excludes land cost					
Total ODC	;		\$252.84	120,515,042					
Total Development C	osts		\$276.84	131,954,642					

APPENDIX D THE REAL ESTATE INVESTMENT PROCESS

The Real Estate Investment Process: A Practitioner's Perspective

Presented by Daniel b. Kohlhepp, Ph.D., MAI

Kohlhepp Corporation

The purpose of the presentation is to describe the real estate investment process from a practitioner's point of view. First, the nature of the process is discussed, and secondly, each step of the eight-step process is described.

Successful real estate investments can be achieved consistently when decisions concerning those investments are made in the context of the entire investment process. This is a labor-intensive, satisfying process in which reasonableness is the most important decision criteria in an uncertain and dynamic environment. The process requires both a to-down and bottom-up analysis; the process is circular in nature.

The objective of real estate investment decisions is to satisfy a series of constraints determined by governments, financial institutions, market conditions, and individual buyers and sellers. Consequently, the real goal is to simply satisfy all limiting conditions while reducing risks and raising returns to acceptable levels.

Every step in the investment process requires a myriad of human interactions. "real estate is a body contact sport," said Trammell Crow, the legendary developer. Selecting the right people throughout the real estate investment process is the most important decision. The right people can make a marginal piece of real estate into a successful investment, but the wrong people can turn the best located, highest quality real estate into an unbelievable disaster.

Successful investments require highly quantitative, computer-based algorithms of modern financial theory to be tempered and conditioned with the experiential-based intuitive decision calculus. Technically rigorous and complex decision models may obscure the essential problems and most significant risks. The decision-maker must ask the questions: is it reasonable to accept

these risks; is it reasonable to expect these returns; and is it reasonable to make these assumptions?

There are eight steps in the real estate investment process. Each step is essential and ignoring or skipping steps will lead to unsuccessful investments in the long run. The steps are:

- 1. Establish Investment Objectives, Policies, and Guidelines. What does a good real estate investment look like? A good investment must meet the guidelines for real estate investments which must be compatible with the strategy of the investment portfolio which must help achieve the mission of the organization.
- Seek Out and Screen Possible Investment Opportunities. Who controls the kinds of investment opportunities that meet the requirements of the real estate portfolio? Appropriate screens are important because the amount of opportunities will always exceed the amount of capital.
- 3. Evaluate the Investment. Is this opportunity acceptable for the real estate portfolio? The property, the market, the people, and the risks and returns must meet or satisfy the investment of portfolio guidelines.
- 4. Structure the Real Estate Investment. Does the investment structure match the real estate enterprise while generating returns and reducing risks to acceptable levels? The investment structure must be clean, simple and fair. Over-structuring an investment is worse than over-improving the site.
- 5. Complete the Due diligence Pr ocess. Is it reasonable to expect that this real estate investment with all of its complexities, nuances, risks, and uncertain returns will achieve the long-term investment objectives? An effective due diligence review helps avoid over-due diligence and "doo-doo" diligence and maintains the integrity of the investment process.
- 6. Control, Close and Fund the Investment. The time between the execution of commitment letter or purchase contract and the closing and funding can be months or years. Consequently, contracts must be managed, the final documents negotiated, and the appropriate fundings made.
- 7. Manage the Real Estate Investment. The real estate investment must be managed against a budget, a pro forma, or a peer group at three levels: the property, the investment, and the portfolio. Timely and accurate reports are essential in this step.
- 8. Sell, Refinance, or Securitize the Investment. Sell or disposition decisions ask two questions. First, does the investment comply with the portfolio strategy and guidelines? If not, can a more compatible real estate investment be found? Refinance or securitization decision asks the questions: Are the additional returns generated by refinancing or securitizing adequate compensation for the additional risks incurred?

Throughout the real estate investment process there is a constant need for accurate, timely, and usable information. All of the participants in the process need to understand the overall process and have access to information developed in each step of the process. Information must flow up and down. (Currently, several software companies are developing decision

support systems which encompass the entire investment process and provide access to common and extensive information banks.) Individuals and organizations that understand and undertake the complete investment process will experience consistently successful real estate investments.

In conclusion, the changing investment climate is important to the development of TopSight as well. There is recognition that effective, real estate management requires timely, accurate process and operations information, as well as accounting-based information. There is a necessity to develop models that will evaluate real estate risks in similar manner as other investments.