$P_0 = P_t / (1+r)^t$
Where: $P_{0} = Value \ at \ time \ 0$ $p_{t} = Value \ at \ time \ t$ $r = risk \ adjusted \ rate \ of \ discount$ Expanded: $V = \sum_{t=1}^{n} \frac{Income_{t}}{(1+r)^{t}} + \frac{\operatorname{Re} \ version_{n}}{(1+r)^{n}}$

Value Estimation's Two Favorite Equations

For the Property Value (PV)

$$PV = \frac{NOI}{OCR}$$

Where:

PV = *Property Value NOI* = *Net Operating Income*

OCR = Overall Cap. Rate OCR =D ± (%Appr/%Depr)

D = Discount Rate D = Weighted Average Cost of Capital

$$PV = \sum_{t=1}^{n} \frac{NOI_{t}}{(1+D)^{t}} + \frac{PR_{n}}{(1+D)^{n}}$$

Where:

PV = Property Value NOI = Net Operating Income D = Discount Rate n = Holding Period $PR_n = Property Residual in year n.$

$$PR_n = SP_n - SE_n$$

Where:

 $SP_n = Selling Price in year n$ $SE_n = Selling Expenses in year n$ $EV = \frac{CF}{\text{Re}}$

Where: CF = Cash Flow After DebtPayment DP = Debt Payment CF = NOI-DP $Re = y \pm (\% Depr / \% Appr)$

y = *Equity Yield Rate, a risk adjusted rate of discount for equity*

$$EV = \sum_{t=1}^{n} \frac{CF_{t}}{(1+y)^{t}} + \frac{ER_{n}}{(1+y)^{n}}$$

Where:

y = Equity Yield Rate, risk adjusted rate of discount ER = Equity Reversion at the end of the holding period

> $ER_n = SP_n - SE_n - UM_n$ $SP_n = Selling \ Price \ in \ year \ n$ $SE_n = Selling \ Expenses \ in \ year \ n$ $UM_n = Unpaid \ Mortgage \ Amount$